An exercise in using the Notre Dame Kinetics

  • Slides: 29
Download presentation
An exercise in using the Notre Dame Kinetics Database in fitting transient absorption data

An exercise in using the Notre Dame Kinetics Database in fitting transient absorption data Dave Bartels Tim Marin Irek Janik $$$ DOE – BES Chemical Sciences, NE/NERI

Electron Radiolysis

Electron Radiolysis

Reaction Set for Radiolysis of Water

Reaction Set for Radiolysis of Water

Water Properties

Water Properties

Apparatus for Supercritical Water Radiolysis Studies

Apparatus for Supercritical Water Radiolysis Studies

Reaction of OH Radical with H 2 Why should this “simple” reaction slow down

Reaction of OH Radical with H 2 Why should this “simple” reaction slow down at higher temperature?

OH + CO 3 - reaction? ? ?

OH + CO 3 - reaction? ? ?

600 nm absorption of carbonate anion radical at 250 C dose

600 nm absorption of carbonate anion radical at 250 C dose

OH + CO 3 - reaction ? ? ? HCO 3 - CO 2

OH + CO 3 - reaction ? ? ? HCO 3 - CO 2 + OH- ? ? ?

Search on carbonate radical reactions

Search on carbonate radical reactions

10 x higher recombination Rate constant? ? ? CO 3 - + H 2

10 x higher recombination Rate constant? ? ? CO 3 - + H 2 O 2 ? ? ?

Relatively slow….

Relatively slow….

Product? ? Assume 2 CO 2 + H 2 O 2 + 2 OH-

Product? ? Assume 2 CO 2 + H 2 O 2 + 2 OH-

mechanism • • • • • • • • Function Carb. Radiolysis(fit, tt, yw,

mechanism • • • • • • • • Function Carb. Radiolysis(fit, tt, yw, dydt) //OH + HCO 3 - --> CO 3*- + H 2 O 0 //OH + OH --> H 2 O 2 1 //OH + CO 3*-->HOOCO 2 - --> CO 2 + HO 22 //CO 3*- + H 2 O 2/HO 2 O 2 - + CO 3= 3 //CO 3*- + CO 3*- --> 4 (too slow to matter much) //H + OH- -> OH (via N 2 O) 5 //H + OH --> H 2 O 6 //H + CO 3*- --> HCO 37 assume same rate as H + OH Variable tt // time value at which to calculate derivatives Wave yw, fit // yw[0]-yw[3] containing concentrations of OH(0), CO 3*-(1), H 202(2), H(3) // fit reflect rate constant of reactions 0 -4 Wave dydt // wave to receive d. A/dt, d. B/dt etc. (output) Wave bicarb, hydrox, k_OH, k_hydrox variable rxn 0, rxn 1, rxn 2, rxn 3, rxn 4, rxn 5, rxn 6, rxn 7, runnum=fit[6] rxn 0 = fit[0]*(bicarb[runnum]+50*carb[runnum])*yw[0] //first order scavenging(rate*bicarb conc) rxn 1 = fit[1]*yw[0] //second order reaction of OH--k, not 2 k rxn 2 =fit[2]*yw[1]*yw[0] // OH reacts with carbonate rxn 3=fit[3]*yw[1]*yw[2] //carbonate reacts with peroxide, producing superoxide rxn 4=fit[4]*yw[1] // carbonate bimolecular reaction, produces peroxide rxn 5=k_hydrox[runnum]*yw[3] // H with hydroxide rxn 6=k_OH[runnum]*yw[3]*yw[0] // H with OH rxn 7= k_OH[runnum]*yw[3]*yw[1] // H with carbonate dydt[0] = -rxn 0 -2* rxn 1 -rxn 2 - rxn 6 + rxn 5 //OH dydt[1] = rxn 0 - rxn 2 - 2*rxn 3 - 2*rxn 4 -rxn 7 //CO 3 -* (rxn 3 removes two carbonate via superoxide) dydt[2] = rxn 1 + rxn 2 - rxn 3+ rxn 4//H 2 O 2/HO 2 dydt[3] = -rxn 5 -rxn 6 -rxn 7 // H atom End

4 x Assuming several shots were averaged, peroxide could build up…

4 x Assuming several shots were averaged, peroxide could build up…

…Yes

…Yes

OH + bicarbonate ion

OH + bicarbonate ion

OH + carbonate ion

OH + carbonate ion