AERODYNAMICS DESIGN Wing Tail Fuselage Control Surfaces PERFORMANCE

  • Slides: 8
Download presentation
AERODYNAMICS DESIGN • Wing • Tail • Fuselage • Control Surfaces PERFORMANCE • Weight-Range

AERODYNAMICS DESIGN • Wing • Tail • Fuselage • Control Surfaces PERFORMANCE • Weight-Range Diagram • Flight Envelope

Airfoil definiton 1. Polar • • NACA 23015 NACA 4412 Davis B-24 FXS 0

Airfoil definiton 1. Polar • • NACA 23015 NACA 4412 Davis B-24 FXS 0 -2196 2. Efficiency 3. Cm-alpha

Plant form & Wing definition • Rectangular wing • Elliptical wing • Trapezoidal wing

Plant form & Wing definition • Rectangular wing • Elliptical wing • Trapezoidal wing – Data from LSAs and gliders – Wing efficiency analysis • NACA 23015 – Wider operative range of – Better manoeuvrability • Davis B 24 – Higher maximum efficiency Wing efficiency analysis PARAMETER VALUE Wing Span 15 m Root Chord 1 m Tip Chord 0, 6 m Surface 12 m 2 Aspect Ratio 18, 75 Maximum Efficiency 44, 7 Stall Speed 27, 5 m/s Stall Speed < 22, 5 m/s

WING REFINEMENT • Wing efficiency NACA 2012 – NACA 23015 – Aerodynamic torsion –

WING REFINEMENT • Wing efficiency NACA 2012 – NACA 23015 – Aerodynamic torsion – Wing tips Winglets • Winglets vs. Elliptic wingtips • Stall behaviour – Geometrical torsion • High-lift device Cl with torsion – Cl without torsion – Trailing edge simple flap NACA 23015 with flap Elliptic wingtips

Tail Design & Definiton Conventional Tail ü Less loads in the vertical stabilizer ü

Tail Design & Definiton Conventional Tail ü Less loads in the vertical stabilizer ü Low weight and complexity Horizontal stabilizer in the wing wake, less efficiency T-Tail ü Tail plane above the wing wake in cruise flight ü Less vibrations and fatigue, higher durability Higher bending moment and weight Risk of deep stall at high angles of attack NACA 0008 HORIZONT AL TAIL VERTICAL TAIL Span 2, 4* m 4 m Area 0, 8 m 2 1, 5 m 2 Root Chord 0, 75 m 0, 5 m Tip Chord 0, 6 m 0, 25 m • Reference data • Influence of • Aspect ratio • Taper ratio • Sweep angle • Incidence angle • Airfoil • Plane’s behaviour study

FUSELAGE In-line Configuration One-plus-Two Configuration üBetter wing position üLower weight üBetter structural performance Worse

FUSELAGE In-line Configuration One-plus-Two Configuration üBetter wing position üLower weight üBetter structural performance Worse efficiency

CONTROL SURFACES Ailerons • 1/10 of the wing • Area = 0. 6 m

CONTROL SURFACES Ailerons • 1/10 of the wing • Area = 0. 6 m 2 • Span = 4 m • Chord = 0. 15 m • Momentum = 3. 73 Nm Rudder • ½ of the fin • Area = 0. 4 m 2 • Span = 1. 2 m • Chord = 0. 375 m • Momentum = 43. 15 Nm Elevator • 1/3 of the horizontal tail’s surface • Area = 0. 5 m 2 • Span = 4 m • Chord = 0. 125 m • Momentum = 6. 48 Nm Max. Deflection = 15 o Taurus Pipistrel

FINAL PLANE CONFIGURATION PARAMETER VALUE Wing Span 16 m Root Chord 1 m Tip

FINAL PLANE CONFIGURATION PARAMETER VALUE Wing Span 16 m Root Chord 1 m Tip Chord 0, 6 m Surface 12, 424 m 2 Aspect Ratio 20, 606 Taper Ratio 10 Maximum Efficiency 35, 42 Stall Speed 22, 3 m/s Ideal efficiency – Efficiency with parasite drag