8051 8051 1 immediate constants MOV A 127
















![資料轉移指令-3 [1] Given (R 1)=33 H, (33 H)=77 H, (DPTR)=1111 H (1111 H)=66 H 資料轉移指令-3 [1] Given (R 1)=33 H, (33 H)=77 H, (DPTR)=1111 H (1111 H)=66 H](https://slidetodoc.com/presentation_image_h/7540d97f5ba582f6280d5f151439e8f4/image-17.jpg)










![• Given (A)=10110010, (R 1)=11110000, (30 H)=22 H [1] ANL A, R 1 • Given (A)=10110010, (R 1)=11110000, (30 H)=22 H [1] ANL A, R 1](https://slidetodoc.com/presentation_image_h/7540d97f5ba582f6280d5f151439e8f4/image-28.jpg)



















- Slides: 47

8051 指令





8051定址模式 1. 立即常數定址(immediate constants) MOV A, #127 (A)=127 常數 127 A 2. 直接定址(direct addressing) MOV A, 7 FH Cpu內記憶體 7 FH (A)=(7 FH)=65 H A

8051定址模式 • 3. 間接定址(indirect addressing) (a) MOV A, @R 0; 搬移cpu內MEM (A)=((R 0)) (b) MOVX A, @DPTR; 搬移外部MEM (A)=((DPTR))=77 H DPTR R 0 45 H 1245 H Cpu內記憶體 45 H 77 H A 外部記憶體 1245 H 77 H A

8051定址模式 4. 暫存器定址 (register addressing) MOV A, R 7 (A)=(R 7)=7 AH R 7=7 AH A

8051定址模式 5. 索引定址 (index addressing) MOVC A, @A+PC; 搬移ROM資料 (A)=((A)+(PC)) A=23 H PC=1234 H 1257 H 66 H A ROM: (A)+(PC)=1257 H (A)=66 H

8051定址模式 5. 索引定址 (index addressing) MOVX A, @A+DPTR; 搬移外部RAM資料 A)+(PC (A)=((A)+(DPTR))=77 H A=23 H 1257 H 66 H DPTR=1234 H A 外部RAM: (A)+(DPTR)=1257 H (A)=66 H

8051指令

符號 • • Rn: R 0~R 7 Ri: R 0, R 1 direct: 0~127 data (常數) 123(十進位) 23 H(十六進位) 10011110 B(二進位)


資料轉移指令-example 1 • MOV A, # 33 H (A)=33 H • MOV A, #01011100 B (A)=5 CH • MOV A, #77 (A)=77 • MOV A, #1 (A)=1 MOV R 1, A ( R 1)=(A)=1


![資料轉移指令3 1 Given R 133 H 33 H77 H DPTR1111 H 1111 H66 H 資料轉移指令-3 [1] Given (R 1)=33 H, (33 H)=77 H, (DPTR)=1111 H (1111 H)=66 H](https://slidetodoc.com/presentation_image_h/7540d97f5ba582f6280d5f151439e8f4/image-17.jpg)
資料轉移指令-3 [1] Given (R 1)=33 H, (33 H)=77 H, (DPTR)=1111 H (1111 H)=66 H MOVX A, @R 1 (A)=(外部RAM(R 1))=((外部RAM (33 H))=77 H MOVX A, @DPTR (A)=((DPTR))=(1111 H)=66 H

資料轉移指令-4 stack • • PUSH A PUSH 30 H PUSH R 1 … POP R 1 POP 30 H POP A stack 30 H SP A SP 30 H A R 1 30 H A FILO: FIRST IN LAST OUT A SP

資料轉移指令-5 • Given (A)=34 H, (R 1)=56 H, (30 H)=78 H XCH A, 30 H (A)=78 H, (30 H)=34 H XCH A, R 1 (A)=56 H, (R 1)=34 H

算數運算指令 加: ADD, ADDC, INC 減: SUBB, DEC 乘: MUL 除: DIV


算數運算指令-2 • Given (A)=20 H, (R 1)=30 H, (30 H)=66 H, (CY)=1 ADD A, #03 H (A)= (A)+3 H= 20 H+3 H=23 H ADDC A, R 1 (A)= (A)+ (R 1)+ (CY)= 20 H+30 H+1=51 H


l Given (A)=10 INC A ; (A)=(A)+1=11 • Given (A)=20 DEC A ; (A)=(A)-1=19 l Given (R 1)=20 DEC R 1 ; ( R 1)=(R 1)-1=20 -1=19 l Given (A)=30, (R 2)=10, CY=0 SUBB A, R 2 ; (A)=(A)-(R 2)-(CY)=30 -10 -0=20

算數運算指令MUL, DIV • Mul A , B : A, B A*B • Div A, B : A, B A/B – 商數存於A; 餘數存於B • Given (A)=15, (B)=20 MUL A, B (A)x(B)=15 x 20=300 (A)=1, (B)=44 • Given (A)=17, (B)=4 DIV A, B ; 17/4=4… 1 (A)=4, (B)=1

邏輯運算指令 • ANL, ORL, XOR • RL, RLC, RRC • CLR

![Given A10110010 R 111110000 30 H22 H 1 ANL A R 1 • Given (A)=10110010, (R 1)=11110000, (30 H)=22 H [1] ANL A, R 1](https://slidetodoc.com/presentation_image_h/7540d97f5ba582f6280d5f151439e8f4/image-28.jpg)
• Given (A)=10110010, (R 1)=11110000, (30 H)=22 H [1] ANL A, R 1 ; (A)=(A) and (R 1) (A): 10110010 (R 1): 11110000 ----------10110000 [2] ORL A, #11100000 B ; (A): 10110010 D 0 H: 11100000 -------------11110010=F 0 H

• AND A, 30 H 10110010 ----------0010=22 H • ORL A, @R 1 A or ((R 1))=A or (30 H) =A or 22 H=B 2 H 10110010 --------10110010=B 2 H



l Given (A)=10 H, (R 1)=33 H XRL A, #FFH ; (A)=EFH l XRL A, R 1 ; 00010000 0011 ---------00100011=23 H

RL A ; (A)=(A)*2 l A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 0 = A 6 A 5 A 4 A 3 A 2 A 1 A 0 0 l (A)=23 H=00100011 RL A=001000110=46 H

RR A; (A)=(A)/2 l 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 =0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 l (A)=23 H=00100011 RR A=00011=0001=11 H

RLC A; (A)=2*(A)+(CY) l CY A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 CY = A 6 A 5 A 4 A 3 A 2 A 1 A 0 CY * (CY)=A 7 l Given ( CY)=1, (A)=23 H=00100011 RLC A (CY) 00100011 (CY)=01000111=47 H, (CY)=0

RRC A l (CY) A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0 (CY) (A) =CY A 7 A 6 A 5 A 4 A 3 A 2 A 1 l (CY) = A 0 l (CY) =1, (A)=23 H=00100011 RRC A (CY) 00100011 (CY) (A)=10010001=91 H (CY) =1


CALL---RET. . . CALL DRLAY MOV A, #56 H. . . DRLAY: MOV R 0, #56 H. . RET.





程式跳躍指令 3 • CJNE A, direct, rel CJNE A, 30 H, LOOP 1 • CJNE A, #data, rel CJNE A, #30 H, LOOP 1 • CJNE Rn, #data, rel CJNE R 2, 30 H, LOOP 1 • CJNE @Ri, #data, rel CJNE @R 1, #30 H, LOOP 1

有條件跳躍4 • JC rel – JC LOOP 1 • JNC rel – JNC LOOP 1 • JB bit, rel – JB PSW. 5, LOOP 1 • JNB bit, rel – JNB 25 H. 5, LOOP 1 • JBC bit, rel – JBC PSW. 5, LOOP 1

布林運算指令 • CLR C CY=0 • CLR bit – CLR P 0. 1=0 – CLR PSW. Z=0 • SETB C • SETB bit CY=1 – SETB P 1. 2=1 – SET TMOD. 3=1

布林運算指令 • ANL C, bit – ANL C, P 3. 1 (CY)=)CY)and P 3. 1 • ANL C, /bit – ANL C, /20 H. 4 • ORL C, bit – ORL C, 23 H. 4 • ORL C, /bit – ORL C, /PSW. 7

布林運算指令 • MOV C, bit – MOV C, PSW. 0 • MOV bit , C – MOV 22 H. 3, C
Clr c in 8051
Mov c
Rc time constant
Coupling constant nmr
Mark overmars gamemaker
Constants scientific method
Crystal binding and elastic constants
Named constants
Ideal gas constant
Crystal binding energy
Static velocity error constant
Equilibrium constant activity
Rc time constants
Nuclear spin quantum number
Constant math
Constants in scientific method
Chem
Const in c#
Walter shewhart
Equilibrium constant
Geminal and vicinal coupling constants
Natural logarithm matlab
Elasticdeformation
P=k/v
Constant int
Kc e kp
Nts 127
Salmo 127
Nts 127
Lync server 2013
Psalms 127
Opwekking 705
Salmo para la familia
Herencia de jehova son los hijos
Iso tc 127
Cnit itu apa artinya
Ignore non routable ethernet
Nts 127
Psalm 127 1-5
What is a sonnet? *
Numberblocks 1
Representasi bilangan adalah
Como no amar a dios
Limiti bilancio consolidato
Als de here het huis niet bouwt
Cse127
Salmo da família 127
Cnit 127.