80386 DX Task Switching The multitaskingmultiuser OS needs

  • Slides: 22
Download presentation
80386 DX

80386 DX

Task Switching • The multitasking/multiuser OS needs the ability to rapidly switch between tasks

Task Switching • The multitasking/multiuser OS needs the ability to rapidly switch between tasks or processes. • 80386 DX supports this operation by providing a task switch instruction hardware. 2

Task Switching • The task switch operation – saves the entire state of the

Task Switching • The task switch operation – saves the entire state of the machine(all of reg. s, address space and a link to previous task), – loads a new execution state, – performs protection checks and – commences execution in the new task • in about 17 microseconds 3

Task Switching • Each task must have a Task State Segment (TSS) associated with

Task Switching • Each task must have a Task State Segment (TSS) associated with it. • The current TSS is identified by the Task State Segment Register(TR) • TR contains the selector referring to TSS Descriptor that defines the current TSS • Returning from a task through IRET makes the current task state to be saved and old task state is restored from TSS 4

TSS of 80386 5

TSS of 80386 5

 • A task switching operation involves the following steps: 1. Checking that the

• A task switching operation involves the following steps: 1. Checking that the current task is allowed to switch to the designated task 2. Checking that the TSS descriptor of the new task is marked present and has a valid limit 3. Saving the state of the current task 4. Loading the task register with the selector of the incoming task’s TSS descriptor 5. Loading the incoming task’s state from its TSS and resuming execution

Virtual 8086 • UQ: Write short note on V-86 mode of operation(05 Marks)

Virtual 8086 • UQ: Write short note on V-86 mode of operation(05 Marks)

Virtual 8086 • It allows the execution of 8086 applications while still allowing to

Virtual 8086 • It allows the execution of 8086 applications while still allowing to take full advantage of protection mechanism • It allows simultaneous execution of 8086 OS and its applications and an 80386 DX OS and both 80286 and 80386 DX applications 8

Virtual Mode Addressing Mechanism • The segment registers are used as in REAL mode

Virtual Mode Addressing Mechanism • The segment registers are used as in REAL mode • The contents of segment register is shifted by 4 bits and added to offset to form linear address 9

Paging in Virtual Mode • It allows concurrent running of multiple VM tasks. •

Paging in Virtual Mode • It allows concurrent running of multiple VM tasks. • It is not necessary that paging should be enabled in V 86 mode but for multiple tasks it is required • Paging allows 20 -bit linear address to form 256 pages and can be allocated anywhere in 4 GB physical memory 10

Paging in Virtual Mode • Since CR 3 is loaded by a task switch,

Paging in Virtual Mode • Since CR 3 is loaded by a task switch, each VM task can use a different mapping scheme to map pages to different physical location • The paging hardware allows the sharing of 8086 application. 11

Virtual Mode Memory Management 12

Virtual Mode Memory Management 12

Protection in Virtual Mode • All VM Tasks execute at a privilege level 3.

Protection in Virtual Mode • All VM Tasks execute at a privilege level 3. • Virtual 8086 mode are subject to all protection checks defined in protection mode • An attempt to execute privileged instruction will cause an exemption 13

Structure of a V 86 Task • A V-86 task consists – Partly of

Structure of a V 86 Task • A V-86 task consists – Partly of 8086 program – Partly of 80386 code that serves as the VM (Virtual Machine)monitor • To run V 86 mode 8086 program needs: – A V-86 monitor – Operating System Services 14

V 86 Monitor • It is an 80386 code that executes at level 0

V 86 Monitor • It is an 80386 code that executes at level 0 • It consists primarily of initialization and exception handling procedures. 15

Entering and Leaving V 86 Mode • The processor can enter V 86 by

Entering and Leaving V 86 Mode • The processor can enter V 86 by two means: • Case 1: – A task switch to an 80386 task loads the image of EFLAGS from the new TSS. – The TSS of the new task contains the VM flag – VM = 1 of the new EFLAGS indicates that the new task is executing 8086 instructions and therefore the segment registers from the TSS forms base addresses as 8086 would. 16

Entering and Leaving V 86 Mode • Case 2: – An IRET from a

Entering and Leaving V 86 Mode • Case 2: – An IRET from a procedure of an 80386 task loads the image of EFLAGS from the stack – VM = 1 indicates that the procedure to which control is being returned is an 8086 procedure – The CPL at the time the IRET is executed must be zero, else the processor does not change VM. 17

Entering and Leaving V 86 Mode • Case 2: – An IRET from a

Entering and Leaving V 86 Mode • Case 2: – An IRET from a procedure of an 80386 task loads the image of EFLAGS from the stack – VM = 1 indicates that the procedure to which control is being returned is an 8086 procedure – The CPL at the time the IRET is executed must be zero, else the processor does not change VM. 18

19

19

Entering and Leaving V 86 Mode • The processor leaves V 86 mode when

Entering and Leaving V 86 Mode • The processor leaves V 86 mode when an interrupt or exception occurs. • Case 1: – The interrupt or exception causes a task switch which loads EFLAGS from the TSS of the new task. – If the new TSS is an 80386 TSS and VM bit is 0 in the EFLAGS, then the processor • clears the VM bit of EFLAGS • loads the segment registers from the new TSS and • begins executing the instructions of the new task according to 80386 protected-mode semantics. 20

Entering and Leaving V 86 Mode • Case 2: – The interrupt or exception

Entering and Leaving V 86 Mode • Case 2: – The interrupt or exception vectors to a privilegelevel zero procedure. – The processor stores the current setting of EFLAGS on the stack, then clears the VM bit. – The interrupt or exception handler, therefore, executes as 80386 protected-mode code 21

22

22