7 July2007 doc IEEE 802 15 07 0683

  • Slides: 60
Download presentation
7 -July-2007 doc. : IEEE 802. 15 -07 -0683 -05 -003 c Project: IEEE

7 -July-2007 doc. : IEEE 802. 15 -07 -0683 -05 -003 c Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Deca. Wave Proposal for TG 3 c Alternative PHY] Date Submitted: [2007 -July-9 th] Source: [Michael Mc Laughlin, Brian Gaffney] Company [Deca. Wave] Address [25 Meadowfield, Sandyford, Dublin 18, Ireland] Voice: [+353 87 688 2514], FAX: [none], E-Mail: [michael. mclaughlin@decawave. com, brian. gaffney@decawave. com] Re: [Response to Call for Proposals] Abstract: [Alternative PHY Proposal for TG 3 c] Purpose: [To assist TG 3 c in selecting a mm Wave PHY] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: Modulation

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: Modulation Scheme • Low complexity, high performance base mode • Base mode, 1. 4 Gbps, enables non coherent receivers • simple, inexpensive devices can receive the same signal as more robust, coherent receivers • Two higher bit-rate modes, 2. 8 Gbps and 4. 2 Gbps are derived from this base mode Submission 2 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: AWGN

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: AWGN Performance Parameter Bit Rate Operating range (LOS) Operating range (NLOS) Submission Low Base High Rate 67 Mb/s 1. 4 Gb/s 2. 8 Gb/s 4. 2 Gb/s 1. 4 Gb/s 51. 6 m 88 m 50. 2 m 30. 4 m 13. 3 m - 25 m 15. 9 m 10. 6 m - 3 Very High Rate Non Coherent Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: Channel

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outline: Channel Model Performance Base High Rate Very High Rate 1. 4 Gb/s 2. 8 Gb/s 4. 2 Gb/s Operating range (CM 1. 3 LOS) 88 m 50 m 29 m Operating range (CM 3. 1 LOS) 78 m 43 m 24 m Operating range (CM 2. 3 NLOS) 20 m 9. 5 m - Parameter Bit Rate Equalisation: Decision Feedback <20 Taps Submission 4 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 System Design

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 System Design • 8 -QAM constellation for all modes. – Convolutional code concatenated with a GF(26) Reed Solomon code for additional error correcting capabilities – Different data rate modes are: • • • 1. 4 Gbps using an unpunctured convolutional code, or 2. 8 Gbps using a punctured convolutional code, or 4. 2 Gbps using no convolutional code – The base mode (1. 4 Gbps) can be received by non-coherent receivers Submission 5 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 8 -QAM

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 8 -QAM • 8 -QAM – Used in the V. 29 modem standard due to resilience to phase noise. – Higher bandwidth efficiency than QPSK. – More resilient to phase noise problems than higher order constellations (16 QAM or 8 -PSK). 001 100 101 000 010 I R 1 110 111 • Allows for Non-Coherent reception • Only two levels R 0 011 – R 1=√ 2, R 0=1+√ 3 Submission Q 6 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 8 -QAM

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 8 -QAM Decision Boundaries 001 100 101 000 010 111 110 011 Submission 7 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Inner Coding

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Inner Coding • Systematic Reed Solomon code is over the Galois field GF(26) and is given as RS(63, 55) • Input of 55 symbols creates 8 parity symbols for a rate 0. 87 code • Systematic code allows low complexity receivers to ignore the parity symbols • Currently used in IEEE 802. 15. 4 a standard Submission 8 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Interleaver •

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Interleaver • An interleaver is placed between the Inner and Outer Code. – Errors from the Viterbi decoder occur in bursts • Interleaver separates these errors such that they occur in different RS code blocks. – This improves the performance significantly Submission 9 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outer Code:

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Outer Code: Convolutional Code • Outer code is rate 1/3, K=4, systematic convolutional code – Low constraint length => complexity very low – With K=4, there are only 8 possible states. • Two parallel encoders/decoders used to reduce decoding clock rate even further Submission 10 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Convolutional Code:

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Convolutional Code: Rate 1/3, K=4 g 1 g 3 + g 2 + • Generator Polynomial: g 1=108, g 2 = 118, g 3 =168 Submission 11 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Convolutional Code

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Convolutional Code • Systematic code gives the option of ignoring the parity bits • Important for Non-Coherent receiver. To be covered later. • However, systematic codes are known to perform worse than non-systematic. • The combination of this systematic code with this constellation mapping approaches the performance optimal non-systematic code with a Gray coded constellation Submission 12 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode – 1. 4 Gbps • Base mode • One bit per symbol. • Data rate = 0. 87*Bandwidth = 1. 4 Gbps • Inner and Outer coding • Interleaver in between • 8 QAM modulation Submission 13 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode Transmitter Block Diagram CCode RS encode Interleaver Serial to Parallel CCode Submission 14 Const Map Parallel to Serial Const Map Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode Receiver Block Diagram Serial to Parallel Const Demap Submission Viterbi Parallel to Serial De. Interleaver RS decode Viterbi 15 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 PA and

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 PA and Phase Noise Simulation Parameters • AM/AM distortion model – P = 1. 6 – Vsat = 2. 09 – G = 79. 43 • AM/PM distortion model – q = 3. 5 – A = -10250 – B = 0. 0554 • OBO = 5 d. B • PN model – PSD(0) = -90 d. Bc/Hz@1 MHz – fp = 1 Mhz, fz = 100 Mhz. Submission 16 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Proposed Band

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Proposed Band Plan U. S. Japan 3 d. B BW 1. 6 Ghz 400 MHz 1 57 400 MHz 2 3 59 4 64 66 f(Ghz) ~2. 2 Ghz Separation Submission 17 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode,

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Base Mode, 1. 4 Gbps AWGN Performance Includes PN, PA Submission 18 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data Rate Mode – 2. 8 Gbps • High Data Rate mode • • Two bits per symbol Punctured Base mode Interleave RS output Data rate = 2*0. 87*Bandwidth = 2. 8 Gbps • Same Tx as Base mode, but with symbol puncturing. Submission 19 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data Rate Mode Puncturing s 3 s 4 s 5 s 6 • Every second symbol is punctured in each of the parallel encoders/decoders. • Receiver the same as base mode. Submission 20 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 High Data Rate Mode 2. 8 Gbps AWGN Performance Includes PN, PA Submission 21 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High Data Rate Mode – 4. 2 Gbps • Very High Data Rate mode • • Submission No convolutional code Reed Solomon RS(63, 55) encoder Interleave RS output Data rate = 3*0. 87*Bandwidth= 4. 2 Gbps 22 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High Data Rate Mode Transmitter RS Submission Mapping 23 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Very High Data Rate Mode 4. 2 Gbps AWGN Performance Includes PN, PA Submission 24 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent Demodulator – 1. 4 Gbps • The Non Coherent receiver is ideal for File Transfer or Kiosk modes • The systematic bit decides which “ring” the transmitted symbol is on. Therefore, by using a simple energy detector receiver we can decode the systematic bit from any base mode signal. • The Outer Reed Solomon code then gives some optional error correcting capabilities Submission 25 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent Mode • Compatible with ASK and OOK receivers. • Enables a very low cost, very low power, implementation • Ideal for integration into media players, phones, cameras etc. Submission 26 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Non Coherent Mode 1. 4 Gbps AWGN Performance Includes PN, PA Submission 27 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Summary AWGN

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Summary AWGN Performance Includes PN, PA Submission 28 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Low Data

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Low Data Rate Mode – 67 Mbps • Low data rate back channel mode. • Length 21 Ipatov ternary sequence. • +00−++− 0+0+−+++++−− 0− • Golay Merit Factor of 5. 3 • Reed Solomon RS(63, 55) encoder • Gives the option of either 67 Mbs or 133 Mbs (high data mode) which is more resistant to errors Submission 29 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Low Data

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Low Data Rate Mode Transmitter RS Submission Spreading 30 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Hidden Node

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Hidden Node Problems • Major problem with directive antenna systems is finding Nodes. • To combat this problem, we propose using a single element mode. • For omni-directional antenna elements, we can now “see” in every direction. • For directive antenna elements, we can only “see” in the direction we can adapt in. Submission 31 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Hidden Node

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Hidden Node Problems • However, the path loss is so high at 60 Ghz, a very weak signal is received when we are not using the antenna array gain • The Solution: • Compensate for the lack of antenna array gain at Tx and Rx by spreading the signal to obtain an equal or higher processing gain Submission 32 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading Sequence • Ipatov Sequence • Perfect Periodic Autocorrelation properties. • Allows for accurate channel estimation for Channel Matched Filtering (CMF) and Antenna Array adaptation. • Used in 802. 15. 4 a • For example, a length 183 sequence is equivalent to an antenna array gain of approximately 22. 2 d. Bi • Many such sequences allows separate piconets to co-exist • Example length 183 Ipatov Sequence: +−−−+0+−−−−−+++++++−−++0+−+−− 00−−+−+−++−−+− 0−−−++−− 0−++− 0−−+++−−+ −+−−+−+++++0−−++−+−−− 0+0+++0+− 0−−−−−+−++−− 0++++−+−−−−+++−+−+−−++−++−+0−++++−++−+++++++−+−−+ Submission 33 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading Sequence Periodic Auto Correlation of Length 183 Ipatov Sequence Submission 34 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Ternary Spreading Sequence • With the perfect autocorrelation we can obtain an excellent estimate of the channel for the Channel Matched Filter (CMF) • Send 16 times before each packet Submission 35 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Link Budget

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Link Budget (LOS) PER 8% Parameter Low Base High Rate Very High Rate Non Coherent PHY-SAP Payload Bit Rate (Rb) 67 Mb/s 1. 4 Gb/s 2. 8 Gb/s 4. 2 Gb/s 1. 4 Gb/s Average Transmit Power 10 d. Bm Transmit Antenna Gain 15 d. Bi Center frequency (fc) 60 GHz 60 GHz Path loss at 1 meter 68 d. B Receive Antenna Gain 15 d. Bi -69. 3 d. Bm -82. 5 d. Bm -79. 5 d. Bm -77. 7 d. Bm -82. 5 d. Bm 8 d. B -74. 5 d. Bm -71. 5 d. Bm -69. 7 d. Bm -74. 5 d. Bm 2. 5 d. B 4. 6 d. B 6. 5 d. B 9. 2 d. B 20. 2 d. B Shadowing link margin 1 d. B Implementation Loss 2 d. B 34. 25 d. B 39 d. B 34 d. B 29. 6 d. B 22. 5 d. B 51. 6 m 88 m 50. 2 m 30. 4 m 13. 3 m Average noise power per bit Noise Figure Average noise power per bit Minimum Eb/N 0 for AWGN channel Tolerable path loss Maximum operating range (d = 10 PL/10 n, n=2) Submission 36 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Link Budget

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Link Budget (NLOS) PER 8% Parameter Base High Rate Very High Rate PHY-SAP Payload Bit Rate (Rb) 1. 4 Gb/s 2. 8 Gb/s 4. 2 Gb/s Average Transmit Power 10 d. Bm Transmit Antenna Gain 15 d. Bi Center frequency (fc) 60 GHz Path loss at 1 meter 68 d. B Receive Antenna Gain 15 d. Bi -82. 5 d. Bm -79. 5 d. Bm -77. 7 d. Bm 8 d. B -74. 5 d. Bm -71. 5 d. Bm -69. 7 d. Bm 4. 6 d. B 6. 5 d. B 9. 2 d. B Shadowing link margin 5 d. B Implementation Loss 2 d. B Tolerable path loss 35 d. B 30 d. B 25. 6 d. B Maximum operating range (d = 10 PL/10 n, n=2. 5) 25 m 15. 9 m 10. 6 m Average noise power per bit Noise Figure Average noise power per bit Minimum Eb/N 0 for AWGN channel Submission 37 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4 Gbps CM 1. 3 Submission 38 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4 Gbps CM 2. 3 Submission 39 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4 Gbps CM 3. 1 Submission 40 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 1. 4 Gbps distance summary Submission 41 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8 Gbps CM 1. 3 Submission 42 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8 Gbps CM 2. 3 Submission 43 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8 Gbps CM 3. 1 Submission 44 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 2. 8 Gbps distance summary Submission 45 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2 Gbps CM 1. 3 Submission 46 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2 Gbps CM 3. 1 Submission 47 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 4. 2 Gbps distance summary Submission 48 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Some slides

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Some slides symbolising the Deca. Wave proposal’s advantages Submission 49 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption High Complexity Solution High Power Consumption Submission 50 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption Deca. Wave Moderate Power Consumption Submission 51 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Power Consumption Deca. Wave Kiosk Mode Very Low Power Consumption Submission 52 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area High Complexity Solution Lot of Silicon Required Submission 53 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area : Deca. Wave Much Less Silicon Required Submission 54 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Silicon Area : Deca. Wave in Kiosk Mode Hardly any Silicon Required Submission 55 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range :

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range : High Complexity Solution Quite Long Range Achievable Submission 56 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range :

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range : Deca. Wave Solution Just as Long Submission 57 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range :

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Range : Deca. Wave in Kiosk Mode Long Enough Submission 58 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Summary of

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Summary of Deca. Wave proposal • 8 -QAM modulation scheme • 4 Data rates • Base mode of 1. 4 Gps obtained with outer RS (rate 0. 87) and inner convolutional (rate 1/3) coding • High data rate mode of 2. 8 Gps obtained by puncturing base mode signal • Very high data rate mode of 4. 2 Gps obtained by using only RS code • Lower rate for back channel using Direct Sequence code • Systematic code developed specifically for the 8 -QAM constellation which enables a Non-coherent receiver architecture Submission 59 Mc Laughlin, Gaffney, Deca. Wave

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Advantages •

doc. : IEEE 802. 15 -07 -0683 -05 -003 c 7 -July-2007 Advantages • Low Power, Low Complexity solution • Constellation resilient to RF impairments • Simple Non-coherent mode • Ideal for low cost receiver e. g. for media player • Single carrier • potential common signalling mode operation • More resistant to multipath • Ternary sequences and omni-directional antenna mode allows easy node discovery and channel estimation Submission 60 Mc Laughlin, Gaffney, Deca. Wave