64 th OSU International Symposium on Molecular Spectroscopy

  • Slides: 16
Download presentation
64 th OSU International Symposium on Molecular Spectroscopy Assignment of mm- and smm-wave spectra

64 th OSU International Symposium on Molecular Spectroscopy Assignment of mm- and smm-wave spectra of rare isotopologues of cyanamide and the rm(1) geometry of NH 2 CN Adam Krasnicki, Zbigniew Kisiel Institute of Physics, Polish Academy of Sciences Brenda P. Winnewisser, Manfred Winnewisser Department of Physics, The Ohio State University

The cyanamide molecule H 2 NCN 5 atoms, 9 normal modes μa = 4.

The cyanamide molecule H 2 NCN 5 atoms, 9 normal modes μa = 4. 3192(40) D, μc =-0. 9559(33) D Inversion transitions (0+-0 -) due to tunneling protons through low potential barrier (469. 12 cm-1) Previous studies by rotational spectroscopy cmw: + ND 2 CN, NHDCN Millen et. al, J. Mol. Spectrosc. 8, 153 (1962) D & 15 N-isototopologues Tyler et. al , J. Mol. Spectrosc. 43, 248 (1972) to 120 GHz: Johnson et. al Astrophys. J. 208, 245 (1976) srb analysis: + D & 15 N Brown et. al, J. Mol. Spectrosc. 114, 257 (1985) to 500 GHz: + D Read et. al, J. Mol. Spectrosc. 115, 316 (1986) 14 N splitting: Brown et al. , J. Mol. Spectrosc. 130, 213 (1988) FT far ir: Birk, Winnewisser, J. Mol. Spectrosc. 159, 69 (1993) ir to 980 cm-1: Moruzzi, Jabs, 2 Winnewisser, J. Mol. Spectrosc. 190, 353 (1998) mmw + ir 8 -350 cm-1 + D Kisiel, Krasnicki, 2 Winnewisser, 63 rd OSU, WK 08, (2008) astrophysical: Turner et al. , Astrophys. J. 201, L 149 (1975) Lines emission in Sgr B 2

More background… Transitions: a – type: 0+→ 0+, 0 -→ 0 - μa=4. 3192(40)D

More background… Transitions: a – type: 0+→ 0+, 0 -→ 0 - μa=4. 3192(40)D c – type: 0+→ 0 -, 0 -→ 0+ μc=-0. 9559(33)D Reduced quartic-quadratic potential V(z)=A(z 4+Bz 2) z=const*mred*A-⅟ 2*Ф MMW spectra measured on BWO based spectrometers in Giessen and Köln 118 -179 GHz, 202 -221 GHz, 570 -650 GHz Wolfgang Jabs, Giessen 1998

The spectra Experimental spectrum a – type (0+ → 0+, 0 - → 0

The spectra Experimental spectrum a – type (0+ → 0+, 0 - → 0 -) c – type (0+ → 0 -, 0 - → 0+)

The spectra of deuterated isotopologues of NH 2 CN ND 2 CN NHDC N

The spectra of deuterated isotopologues of NH 2 CN ND 2 CN NHDC N a. R, J” = 7, {0+, 0 -} Relative intensity: ND 2 CN : NHDCN : NH 2 CN 1 : 0. 15 NH 2 CN

The spectra of deuterated isotopologues of NH 2 CN a. R, J” = 7,

The spectra of deuterated isotopologues of NH 2 CN a. R, J” = 7, {0+, 0 -} Relative intensity: ND 2 CN : NHDCN : NH 2 CN 1 : 0. 15 13 C abundance 1. 07% ND 213 C N NHD 13 C N NH 213 C N

The spectra of deuterated isotopologues of NH 2 CN a. R, J” = 7,

The spectra of deuterated isotopologues of NH 2 CN a. R, J” = 7, {0+, 0 -} Relative intensity: ND 2 CN : NHDCN : NH 2 CN 1 : 0. 15 13 C abundance 1. 07% 15 N abundance 0. 368% 15 ND N ND 2 C 15 N 2 C 15 NHDC N NHDC 15 N

The J = 8 ← 7 rotational transition in ND 2 C 15 N

The J = 8 ← 7 rotational transition in ND 2 C 15 N Blue – 0+ White – 015 ND 2 CN, Ka=1, 0+ NHDCN, c. Q, 0+→ 0 -

The J = 8 ← 7 rotational transition in ND 2 C 15 N

The J = 8 ← 7 rotational transition in ND 2 C 15 N Ka=4 0+ Blue – 0+ White – 0 - Ka=5 0 - 0+ 0 - 2: 1 alternation of statistical weights

The Hamiltonian 0+ H(0)rot + ΔE H 01 H(1)rot 0 - Simultaneous fit of

The Hamiltonian 0+ H(0)rot + ΔE H 01 H(1)rot 0 - Simultaneous fit of data for 0+ and 0 states with SPFIT of H. M. Pickett Hrot – Watsonian asymmetric rotor Hamiltonian (reduction A, represent. Ir) H 01 – interstate second order Coriolis coupling terms expressed in Reduced Axis System (H. M. Pickett, J. Chem. Phys. , 1972, 56, 1715. ) H 01 = (Fca + Fca. J P 2 + Fca. K Pz 2 + …) (Pc Pa + Pa Pc ) + Fbc (Fbc + Fbc. J P 2 + Fbc. K Pz 2 + …) (Pb Pc + Pc Pb ) term used only for the HDNCN species

The fitted constants for ND 2 C 15 N + similar results for NH

The fitted constants for ND 2 C 15 N + similar results for NH 213 CN, NHD 13 CN, ND 213 CN, NHDC 15 N, 15 ND CN, 15 NHDCN 2 For ND 2 CN E = 494551. 901(27) MHz Fca = 267. 6102(19) MHz

The 0+- 0 - splitting as a test for correct assignment ΔE(0 - -

The 0+- 0 - splitting as a test for correct assignment ΔE(0 - - 0+) ND 2 CN ΔEisot. - ΔEND 2 CN ND 213 CN ND 2 C 15 ND obs. / cm-1 16. 4965304(9) obs. / cm-1 0. 022 -0. 011 -0. 633 calc. / cm-1 15. 387 calc. / cm-1 0. 049 -0. 064 -0. 771 ΔE(0 - - 0+) NHDCN ΔEisot. - ΔENHDCN NHD 13 CN NHDC 15 NHDCN obs. / cm-1 32. 089281(4) obs. / cm-1 0. 029 -0. 001 -0. 780 calc. / cm-1 31. 062 calc. / cm-1 0. 062 -0. 082 -0. 986 ΔE(0 - - 0+) NH 2 CN ΔEisot. - ΔENH 2 CN NH 213 CN obs. / cm-1 49. 567984(4) obs. / cm-1 0. 062 calc. / cm-1 49. 567 calc. / cm-1 0. 069 Results from obtained by using the reduced quartic-quadratic potential V(z)=A(z 4+Bz 2) and program ANHARM 2 CN A, B parameters scaled for isotopic species based on reduced mass for inversion motion in cyanamide

Experimental r 0, rm(1) and rm(1 L) geometries of cyanamide r 0 rm(1) rm(1

Experimental r 0, rm(1) and rm(1 L) geometries of cyanamide r 0 rm(1) rm(1 L) r(N─H) /Å 1. 0032(12) 1. 0189(23) 1. 0152(27) r(N─C) 1. 3445(57) 1. 3448(17) 1. 3434(17) r(C≡N) 1. 1632(59) 1. 1650(18) 1. 1641(17) (HNH) /° 116. 26(23) 112. 32(24) 111. 79(31) (NCN) [180. 0] Φ 35. 47(60) 41. 67(90) 43. 05(70) ca /u 1/2*Å -0. 0550(93) -0. 121(30) cb -0. 0194(11) -0. 0146(24) cc [0. 0] 0. 028(12) δH σfit / uÅ2 0. 01545 0. 00462 0. 00431

Comparison of geometries of cyanamide rm(1 L) this work MP 2/aug-cc-p. VTZ this work

Comparison of geometries of cyanamide rm(1 L) this work MP 2/aug-cc-p. VTZ this work averaged rs str. Tyler et. al JMS ’ 72 semirigid bender Brown et. al JMS ’ 88 r(N─H) /Å 1. 0152(27) 1. 0096 1. 001(15) [0. 9994] r(N─C) 1. 3434(17) 1. 3450 1. 346(5) 1. 3301(5) r(C≡N) 1. 1641(17) 1. 1724 1. 160(5) [1. 1645] (HNH) /° 111. 79(31) 111. 93 113(2) 120. 78(46) (NCN) [180. 0] 176. 65 [180] [175] 44. 74 38(1) 45. 03(20) Φ 43. 05(70)

Conclusions • The mmw and smm rotational spectra of 7 rare isotopic species of

Conclusions • The mmw and smm rotational spectra of 7 rare isotopic species of cyanamide have been assigned , up to Ka=7 and J”=34 (ca 200 lines for each species). • Spectroscopic information on 15 ND 2 CN, ND 2 C 15 N has been considerably improved. • The spectra of NH 213 CN, NHD 13 CN, ND 213 CN, 15 NHDCN, NHDC 15 N have been assigned for the first time. • The structure of cyanamide has been derived. • We hope that further progress in understanding of the cyanamide geometry will come from semi-experimental equilibrium structure.

Acknowledgments We are indebted to Wolfgang Jabs (Giessen) who recorded all of the spectra

Acknowledgments We are indebted to Wolfgang Jabs (Giessen) who recorded all of the spectra used in this work. We are grateful to Ewa Bialkowska-Jaworska (Warszawa) for help with ab initio calculations.