3112021 doc IEEE 802 15 07702 r 6

  • Slides: 37
Download presentation
3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Project: IEEE P 802. 15

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposal for HD AV and data support] Date Submitted: [7 May 2007] Source: [(alphabetical list) Gary Baldwin 3, Dengwei Fu 3, James P. K. Gilb 3, Jeff Gilbert 3, Ricky Ho 3, Seeongsoo Kim 2, Edwin Kwon 2, John Marshall 3, Yasuhisa Nakajima 4, Chiu Ngo 2, Jisung Oh 2, Takehiko Okuyama 5, Steve Pope 3, Hidenori Shimawaki 1, Bernard Shung 3, Karim Toussi 3, ] Company [1 NEC Corporation 2 Samsung Electronics, Co. , Ltd, 3 Si. BEAM, Inc. , 4 Sony Corporation , 5 Toshiba Corporation] Address [See next page for contact information] Voice: [], FAX: [], E-Mail: [] Re: [15 -07 -0586 -01 -003 c-tg 3 c-call-proposals. doc] Abstract: band. ] [Proposal for Wireless support of uncompressed HD audio and video using 60 GHz unlicensed Purpose: [Proposal to TG 3 c for alternate PHY amendment] Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. TG 3 c Presentation 1 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Contact information • Hidenori Shimawaki

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Contact information • Hidenori Shimawaki – NEC – h-shimawaki at cj dot jp dot nec dot com • Seeongsoo Kim, Edwin Kwon, Chiu Ngo, and Jisung Oh – Samsung Electronics Co. , Ltd – – 416 Maetan-3 Dong, Youngtong-Gu, Suwon-Shi, Gyungki-Do 443 -742, Korea seongsoo 1. kim at samsung dot com, cy dot kwon at samsung dot com, chiu. ngo at samsung dot com, jisung 0714. oh at samsung. com • Gary Baldwin, Dengwei Fu, James P. K. Gilb, Jeff Gilbert, Ricky Ho, John Marshall, Steve Pope, Bernard Shung, Karim Toussi – Si. BEAM, Inc. – – 555 N Mathilda Ave Ste 100, Sunnyvale, CA 94085, +1 408 245 3120 gbaldwin at sibeam dot com, dfu at sibeam dot com, gilb at ieee dot org, jgilbert at sibeam dot com, kpho at sibeam dot com, spope at sibeam dot com, bshung at sibeam dot com, kntoussi at sibeam dot com • Yasuhisa Nakajima – Sony Corporation – – TV Business Group, Sony Corporation jim dot nakajima at jp dot sony dot com • Takehiko Okuyama – Toshiba Corporation – – 2 -9, Suehiro-Cho, Ome, Tokyo, 198 -8710, Japan, +81 -428 -34 -4310 takehiko dot okuyama at toshiba dot co dot jp TG 3 c Presentation 2 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Overview • This proposal defines

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Overview • This proposal defines a PHY which – Supports streaming uncompressed audio and video at up to 1080 p resolution, 24 bit color at 60 Hz refresh rates – Delivery compressed A/V streams and data – Unlicensed operation at 60 GHz with a typical range of at least 10 m for highest resolution HD A/V – Smart antenna technology to enable non line of sight (NLOS) operation • Two PHY major modes, both OFDM – High rate PHY (HRP): up to 4 Gb/s, beam formed directional link – Low rate PHY (LRP), up to 10 Mb/s in omni-directional mode, up to 40 Mb/s in beam formed mode TG 3 c Presentation 3 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Usage models/applications • Support for:

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Usage models/applications • Support for: – UM 1: > 3 Gb/s throughput at 10 m, NLOS, 10 -9 character error rate (CER) – UM 2: TV 1 @ 1. 5 Gb/s, TV 2 @ 0. 5 Gb/s throughput at 10 m, NLOS, 10 -9 CER – UM 3: 1. 5 Gb/s, 10 -9 CER and 0. 25 Gb/s async and 0. 5 Gb/s async, all at 10 m, NLOS – UM 5: > 2. 25 Gb/s throughput at 10 m, LOS and NLOS environment TG 3 c Presentation 4 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Piconet architecture Control/commands DEV-1 DEV-2

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Piconet architecture Control/commands DEV-1 DEV-2 Control/commands Beacon PNC Streaming A/V Compressed A/V Beacon Streaming Audio HRP LRP DEV-3 TG 3 c Presentation 5 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Comparing HRP and LRP •

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Comparing HRP and LRP • HRP is typically used for – – Isochronous data such as audio and video Asynchronous data MAC commands Antenna information • LRP is typically used for – – – Low-rate isochronous data such as audio Low-rate asynchronous data, MAC commands including the beacon, Acknowledgements for HRP packets, Antenna information TG 3 c Presentation 6 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4 classes of DEV based

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4 classes of DEV based on PHY • Many DEVs only need HRP in TX (e. g. , DVD player) or RX (e. g. , display) • All DEVs support LRP, TX and RX • To minimize complexity and cost define 4 classes of DEVs – HR 0: Neither HRP TX nor HRP RX – HRRX: HRP RX, but not HRP TX – HRTX: HRP TX, but not HRP RX – HRTR: Both HRP TX and HRP RX TG 3 c Presentation 7 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Updated Channel Plan • Up

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Updated Channel Plan • Up to 4 independent HRP channels, depending on the regulatory domain • For each HRP channel, there are 3 LRP channels Channel index Start frequency Center frequency Stop frequency 1 57. 240 GHz 58. 320 GHz 59. 400 GHz 2 59. 400 GHz 60. 480 GHz 61. 560 GHz 3 61. 560 GHz 62. 640 GHz 63. 720 GHz 4 63. 720 GHz 64. 800 GHz 65. 880 GHz Channel index Start frequency Center frequency Stop frequency 1 fc(HRP)-207. 625 MHz fc(HRP)-158. 625 MHz fc(HRP)-109. 625 MHz 2 fc(HRP)-49 MHz fc(HRP)+49 MHz 3 fc(HRP)+109. 625 MHz fc(HRP)+158. 625 MHz fc(HRP)+207. 625 MHz TG 3 c Presentation 8 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP overview • Date rates

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP overview • Date rates up to 4 Gb/s • OFDM modulation for NLOS environment Parameter – Traveling pilots for improved channel estimation • Sub-packets for aggregating data – Improves efficiency – Allow ACKs for individual sub-packets • ACKs are done with LRP TG 3 c Presentation 9 Value Occupied bandwidth 1. 76 GHz Reference sampling rate 2. 538 Gsamples/s Number of subcarriers 512 FFT period ~ 202 ns Subcarrier spacing ~5. 0 MHz Guard interval 64 symbols, ~ 25 ns Symbol duration ~227 ns Number data subcarriers 336 Number of DC subcarriers 3 Modulation QPSK, 16 -QAM Outer block code Reed-Solomon, rate 0. 96 Inner convolutional code 1/3, 2/3 (EEP) 4/5, 4/7 (UEP) Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP data rates HRP mode

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP data rates HRP mode index 0 and 1 would be mandatory, other HRP modes would be optional Code rate HRP mode index Coding mode 0 1 EEP 2 3 4 5 6 TG 3 c Presentation UEP MSB-only retransmission Modulation MSB LSB [7 -4] [3 -0] Raw data rate (Gb/s) QPSK 1/3 0. 95 QPSK 2/3 1. 90 16 -QAM 2/3 3. 81 QPSK 4/7 4/5 1. 90 16 -QAM 4/7 4/5 3. 81 QPSK 1/3 N/A 0. 95 QPSK 2/3 N/A 1. 90 10 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Capability: Skewed constellation HRP

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Capability: Skewed constellation HRP QPSK Constellation Mapping TG 3 c Presentation HRP 16 -QAM Constellation Mapping 11 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 TX Baseband architecture Input data

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 TX Baseband architecture Input data msb Reed-Solomon outer encoder Scrambler lsb Reed-Solomon outer encoder IFFT Guard interval TG 3 c Presentation Tone interleaver Outer interleaver Convolutional encoder and puncturing Outer interleaver Pilot/DC null insert Symbol shaping 12 Symbol mapper Data Mux Bit interleaver Upconversion Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 TX mask for HRP and

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 TX mask for HRP and LRP TG 3 c Presentation 13 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP Performance in AWGN 1/2

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP Performance in AWGN 1/2 1/4 TG 3 c Presentation 14 Full Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP performance in multipath Model

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 HRP performance in multipath Model was developed to estimate the required SNR for full rate, 10 -7 BER (solid line of the right figure). The 100 worst channels are selected according the model (marker is the simulated results) TG 3 c Presentation 15 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Feature: Beam forming and

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Feature: Beam forming and tracking TX beam acquired beam totally lost: TX beam search follows beam forming acquisition failed ng l mi sfu for ces am suc be ing ck tra no-channel variation beam forming acquisition successful start deep fading strong interference excessive noise and others slow channel variation beam forming tracking failed beam slightly deviated: TX beam tracking follows TG 3 c Presentation 16 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Frame structure High rate protocol

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Frame structure High rate protocol data unit (HRPDU) HRP preamble HRP header MAC header SP 1 SP 2 HCS MPDU SP 3 SP 4 Beam tracking SP 5 SP 6 SP 7 Omni low rate protocol data unit (Omni LRPDU) Omni LRP preamble HRP header MAC header HCS MPDU Beam formed low rate protocol data unit (Beam formed LRPDU) Beam formed LRP preamble TG 3 c Presentation HRP header MAC header 17 HCS MPDU Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 LRP characteristics • BPSK OFDM

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 LRP characteristics • BPSK OFDM • Same baseband architecture • Omni mode Parameter – Near omni-directional coverage – Up to 10 Mb/s • Beam steered mode – Directional connectivity – Up to 40 Mb/s TG 3 c Presentation 18 Value Occupied bandwidth 92 MHz Reference sampling rate 317. 25 Msamples/s Number of subcarriers 128 FFT period ~ 403 ns Subcarrier spacing ~2. 48 MHz Guard interval 28 symbols, ~ 88 ns Symbol duration ~492 ns Number data subcarriers 30 Number of DC subcarriers 3 Number of pilots 4 Modulation BPSK Convolutional code 1/3, , 1/2, 2/3 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 LRP modes • Repetition coding

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 LRP modes • Repetition coding is used to improve LRP range • Directional LRP used for ACKs and beam forming messages TG 3 c Presentation LRP mode index Modulation FEC Omni PHY data rate (Mb/s) 0 BPSK 1/3 2. 5 8 x 1 1/2 3. 8 8 x 2 2/3 5. 1 8 x 3 2/3 10. 2 4 x 19 Replication Omni Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Collaboration/Optional PHYs • Different applications

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Collaboration/Optional PHYs • Different applications may require different focus for the PHY – UM 1 and UM 2 NLOS video streaming require agile antenna steering, more capable radios – UM 5 is supported by this proposal, but a simpler radio might achieve the requirements • Want to collaborate with other proposers – Dual, optional PHYs – Focus on different applications – Precedent for multiple, optional PHYs in IEEE through 802. 11 and 802. 16 • Best application performance is necessary • Detect and avoid capability is necessary • Common frequency plan and interoperability is desirable but not necessary TG 3 c Presentation 20 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Proposal evaluation TG 3 c

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Proposal evaluation TG 3 c Presentation 21 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 1 Unit manufacturing cost

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 1 Unit manufacturing cost • 60 GHz RFICs are possible with current technology – Both Si. Ge and CMOS circuits have been built and measured as reported in the open literature • Many antenna configurations are possible – High-frequency => small size antennas allow multisector and phased-array implementations • High speed modems are becoming more common – 1 Gb/s ethernet is now standard in laptops – 10 Gb/s ethernet will soon be common TG 3 c Presentation 22 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 2 Signal robustness •

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 2 Signal robustness • 4. 2. 1. 2 Sensitivity – HRP mode 0: < -50 d. Bm • 0. 9 Gb/s with < 10 -7 BER (< 0. 5% PER with 5870 octet packets) – LRP mode 1: < -70 d. Bm • 3. 8 Mb/s with < 10 -7 BER (< 0. 01% PER with 100 octet packets) • 4. 2. 2. Interference and susceptibility Maximum PI-Pd Section 200 MHz 1200 MHz 4. 2. 2. 3. 1 Generic in-band modulated interferer 7. 6 d. B -0. 2 d. B 4. 2. 2. 3. 2 Generic in-band tone interferer 7. 6 d. B -0. 2 d. B 4. 2. 3. 3. 3 Out-of-band interference Implementation dependent TG 3 c Presentation 23 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 2. 3 Coexistence •

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 2. 3 Coexistence • With the transmit and receive antenna pointed directly at each other • LOS (no blockage, reflection, etc. ) • Distances at which interfering average power is equal to the minimum sensitivity levels are: – 802. 16 Wireless. MAN-SC: 5. 7 m – ARIB STD-T 69: 1. 5 m – ARIB STD-T 74: 4. 2 m • Typical cases will not be pointed directly at each other. With 10 d. B offset in antenna gains (5 d. B per side): – 802. 16 Wireless. MAN-SC: 1. 8 m – ARIB STD-T 69: 0. 5 m – ARIB STD-T 74: 1. 3 m TG 3 c Presentation 24 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 3 Technical Feasibility •

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 3 Technical Feasibility • 4. 3 Technical feasibility – 4. 3. 1 Manufacturability • The combination of low cost semiconductors and flip -chip antenna attachment (e. g. , 15 -06 -0003 -00) make it possible to build these radios – 4. 3. 2 Time to market • The packaging and semiconductor process required are available now. – 4. 3. 3 Regulatory impact • Available for unlicensed operation in North America, Japan and Korea see e. g. , 15 -05 -0572 -00 • Likely approval soon in EU. TG 3 c Presentation 25 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 4 Scalability • Power

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 4. 4 Scalability • Power consumption – TX power can be controlled using 802. 15. 3 b MAC capabilities and RX power with sleep modes • Throughput – Beam forming for TX and RX allows spatial re-use without the overhead of coordinating multiple piconets. • Complexity – DEVs can implement HR 0, HRRX, HRTX or HRTR to match complexity to the application. • Frequency of operation – Only support of primary channel is required, improved throughput is available by using the other channel. TG 3 c Presentation 26 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 5. MAC additions • LRP

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 5. MAC additions • LRP fully supports 802. 15. 3 b operation – Omni LRP for beacon and contention periods – Preambles sense multiple access (PSMA) • HRP support additions – Schedule IE for beacon efficiency and PHY usage information – Additional bits in CTRq command to specify HRP/LRP and beam formed/non beam formed – Directional ACK for improved throughput – IEs to negotiate stream setup (inter-packet period and beam forming modes) – HRP packet delivery rules TG 3 c Presentation 27 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 1 Size and Form

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 1 Size and Form Factor • Moderate gain antennas are very small – 15 d. Bi in less than 4 cm^2 • Fully integrated RF front ends on a single chip have been demonstrated – Many papers in open literature and at IEEE 802. 15. 3 c meetings • Typical PHY and MAC implementations will easily fit into a Wireless. HDMI adapter, Mini. PCIe, Express Card or USB dongle form factors. TG 3 c Presentation 28 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 2 Payload bit rate

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 2 Payload bit rate and throughput • 6. 2. 1 PHY-SAP Payload bit rates – HRP 0. 94 and 1. 9 Gb/s mandatory, 3. 8 Gb/s and UEP modes optional – LRP 2. 5, 3. 8, 5. 0, 10. 0 Mb/s mandatory, 20, 30 and 40 Mb/s optional • 6. 2. 2 Packet overhead Parameter Value T_PA_INITIAL 1. 9 ms Parameter Value T_HCS (inc. in T_MAC_HDR) T_PA_CONT 1. 9 ms T_PAYLOAD 200 ms (typically) T_PHY_HDR 230 ns T_FCS (inc. in T_PAYLOAD) T_MAC_HDR 230 ns T_MIFS 2 ms T_SIFS 2 ms TG 3 c Presentation 29 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 2. 3 Data Throughput

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 2. 3 Data Throughput • Assume 200 us of data with 7 subpackets per frame • Since SIFS = MIFS, No-ACK case is independent of the number of packets Parameter HRP 0 HRP 1 HRP 2* Payload bit rate (Gb/s) 0. 95 1. 90 3. 80 Octets per frame 23758 47558 95133 Data throughput, no-ACK (Gb/s) 0. 93 1. 86 3. 73 Efficiency, no-ACK 98% 98% Data throughput, Imm-ACK 0. 90 1. 80 3. 59 Efficiency, Imm-ACK 94% 94% *Note that HRP mode 2 would be optional TG 3 c Presentation 30 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 5 System performance •

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 5 System performance • Channel model used reflects beam formed TX antenna not present in IEEE models • EVM requirements for TX are used for bounding TX signal quality – Includes all impairments • • PA non-linearity ADC jitter LO phase noise quantization errors, etc. – Mode 0 < -7 d. B, Mode 1 < -14 d. B, Mode 2 < 21 d. B TG 3 c Presentation 31 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 6 Link budget Parameter

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 6 Link budget Parameter Value Average TX power 10 d. Bm TX antenna gain (typical) 15 d. Bi Center frequency 60 GHz RX antenna gain (typical 15 d. Bi Bandwidth 1. 76 GHz SNR for 10 -7 (mode 0) 0. 5 d. B Reflection loss 5 d. B Path loss exponent 2 NF and implementation loss 10 d. B HRP mode Mode 0 Mode 1 Mode 2* Mode 4 lsb* Mode 4 msb* Required SNR 0. 5 d. B 4. 5 d. B 11 d. B 9. 8 d. B 13. 2 d. B Range 57 m 36 m 17 m 19 m 13 m *Note that HRP mode 2 and 4 would be optional TG 3 c Presentation 32 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 7, 6. 8, 6.

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 6. 7, 6. 8, 6. 9, 6. 10 • 6. 7 Sensitivity – HRP mode 0: < -50 d. Bm • 0. 9 Gb/s with < 10 -7 BER (< 0. 5% PER with 5870 octet packets) – LRP mode 1: < -70 d. Bm • 3. 8 Mb/s with < 10 -7 BER (< 0. 01% PER with 100 octet packets) • 6. 8 Power management modes – All 802. 15. 3 b power management modes are supported • 6. 9 Power consumption – Similar to 802. 11 MIMO radios • 6. 10 Antenna practicality – 15 d. Bi antenna is less than 4 cm^2 – Can be printed and flip attached as in 15 -06 -0003 -00 TG 3 c Presentation 33 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Backup TG 3 c Presentation

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Backup TG 3 c Presentation 34 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 EEP and UEP in AWGN

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 EEP and UEP in AWGN TG 3 c Presentation 35 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Constellation for UEP mapping QPSK

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Constellation for UEP mapping QPSK TG 3 c Presentation 16 -QAM 36 Various authors - TG 3 c proposal

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Capability: Unequal Error Protection

3/11/2021 doc. : IEEE 802. 15 -07/702 r 6 Optional Capability: Unequal Error Protection (UEP) • UEP - Coding MSB RS bank CC bank Rate 1 LSB RS bank CC bank Rate 2 • UEP - Mapping MSB RS bank CC bank LSB RS bank CC bank TG 3 c Presentation Normal QAM mapper Mux & Int. I-axis Mux & Int. 37 Q-axis Skewed QAM mapper Various authors - TG 3 c proposal