3 Features of x Graphs The original function

  • Slides: 10
Download presentation
3 Features of +x Graphs The original function is… f(x) is… 6 y is…

3 Features of +x Graphs The original function is… f(x) is… 6 y is… y 5 Stationary 4 3 2 Increasing Decreasing 1 x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -1 -2 Increasing -3 Stationary -4 -5 -6 1

Investigate the tangents of +x 3 Graphs The slope function is… f’(x) is… 6

Investigate the tangents of +x 3 Graphs The slope function is… f’(x) is… 6 dy/dx is… y 5 4 3 Slope values are decreasing 2 1 x -6 -5 -4 -3 -2 -1 Point of Inflection -1 = slopes stop -2 decreasing and start-3 increasing 1 2 3 4 5 6 Slope values are increasing -4 -5 -6 2

Features of the Slope Function Graph Reading the features of the graph of the

Features of the Slope Function Graph Reading the features of the graph of the slope function from the original function 6 5 y slope function = 0 (cuts x-axis) dy/dx= 0 4 3 2 -6 -5 Slope values are decreasing →slope function -4 -3 decreasing 1 -2 -1 Turning Point of the slope function: where slopes turn from decreasing to increasing = min 1 2 Slope values are increasing →slope function 3 increasing 4 x 5 6 -1 -2 -3 -4 dy/dx= 0 slope function = 0 (cuts x-axis) -5 -6 Slope Function: U shaped (positive cubic graph will have positive derivative graph) Minimum point at same x value as the point of inflection 3 Cuts x-axis at the x values of the turning points

The slope function is… f’(x) is… 6 dy/dx is… y ORIGINAL FUNCTION 5 dy/dx=

The slope function is… f’(x) is… 6 dy/dx is… y ORIGINAL FUNCTION 5 dy/dx= 0; slope function =0 y = f(x) 4 Turning Point: Decreasing to increasing = min pt 3 Slope values are decreasing 2 1 -6 -5 -4 -3 -2 -1 1 2 -1 3 4 5 x 6 Slope values are increasing -2 -3 dy/dx= 0; slope function = 0 -4 -5 -6 6 y SLOPE FUNCTION 5 y = f’(x) 4 3 Slope values are decreasing Slope values are increasing 2 1 -6 -5 -4 -3 -2 dy/dx= 0; slope function = 0 -1 1 -1 2 3 4 dy/dx= 0; slope function = 0 5 x 6 x -2 Turning Point: -3 Decreasing to increasing -4 = min pt -5 -6 4

Also, we can read where the slope function is above and below the x+

Also, we can read where the slope function is above and below the x+ + +from + + + the + 0 -original - - - - function --0+++++++ axis 6 y 5 4 3 Slopes are positive -6 -5 -4 -3 -2 2 1 Slopes are negative -1 1 Slopes are positive 2 3 4 5 x 6 -1 -2 -3 -4 -5 -6 6 y 5 4 Slope Function above x-axis -6 -5 -4 -3 -2 Slope Function above x-axis 3 2 1 -1 1 2 3 4 -1 -2 Slope -3 Function -4 -5 below x-axis -6 5

At what rate is the slope function changing? f’’(x) is… d 2 y/dx 2

At what rate is the slope function changing? f’’(x) is… d 2 y/dx 2 is. . . 6 How fast is the rate of decrease of the slopes? y 5 4 3 2 1 x -6 -5 -4 -3 -2 -1 1 -1 -2 -3 -4 2 3 4 5 6 How fast is the rate of increase of the slopes? -5 -6 Finding the rate of change of the rate of change…. Finding the second derivative 6

A step further to investigate the tangents of the slope function. Second Derivative Function

A step further to investigate the tangents of the slope function. Second Derivative Function is… f’’(x) is… d 2 y/dx 2 is. . . 6 y ORIGNAL FUNCTION 5 dy/dx= 0; slope function =0 y = f(x) 4 Turning Point: Decreasing to increasing = min pt 3 Slope values are decreasing 2 1 -6 -5 -4 -3 -2 -1 1 2 -1 3 4 5 x 6 Slope values are increasing -2 -3 dy/dx= 0; slope function = 0 -4 -5 -6 6 y SLOPE FUNCTION 5 y = f’(x) 4 3 Slope values are decreasing Slope values are increasing 2 1 -6 -5 -4 -3 -2 dy/dx= 0; slope function = 0 -1 1 -1 2 3 4 dy/dx= 0; slope function = 0 5 x 6 -2 Turning Point: -3 Decreasing to -4 increasing -5= min pt -6 7

6 y SLOPE FUNCTION 5 y = f’(x) 4 3 Slope values are decreasing

6 y SLOPE FUNCTION 5 y = f’(x) 4 3 Slope values are decreasing Slope values are increasing 2 1 -6 -5 -4 -3 -2 dy/dx= 0; slope function = 0 -1 1 -1 -2 Turning Point: -3 Decreasing to -4 increasing -5= min pt -6 2 3 4 dy/dx= 0; slope function = 0 5 x 6

6 y SLOPE FUNCTION 5 y = f’(x) 4 -6 Slope values are increasing

6 y SLOPE FUNCTION 5 y = f’(x) 4 -6 Slope values are increasing →Second Derivative Function is -4 increasing -5 -3 3 Slope values are increasing →Second Derivative Function 3 4 is increasing 5 2 1 -2 -1 1 2 x 6 -1 -2 -3 Slope=0 (d 2 y/dx 2 = 0) Second Derivative Function =0 -4 (cuts x-axis) -5 -6 6 y SECOND DERIVATIVE FUNCTION 5 4 3 y = f’’(x) 2 1 -6 -5 -4 -3 -2 -1 1 -1 -2 -3 -4 -5 -6 2 3 4 5 x 6

Original Function, First Derivative Function, Second Derivative Function 6 y 5 4 3 2

Original Function, First Derivative Function, Second Derivative Function 6 y 5 4 3 2 1 y = f(x) -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 1 2 3 4 5 x 6 6 y 5 4 3 2 1 y = f’(x) -6 -5 -4 -3 -2 -1 y = f’’(x) -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 6 y 5 4 3 2 1 -1 -2 -3 -4 -5 -6 1 2 3 10