3 5 Linear Equationsinin Three Dimensions Warm Up

  • Slides: 12
Download presentation
3 -5 Linear. Equationsinin. Three. Dimensions Warm Up Lesson Presentation Lesson Quiz Holt Algebra

3 -5 Linear. Equationsinin. Three. Dimensions Warm Up Lesson Presentation Lesson Quiz Holt Algebra 22

3 -5 Linear Equations in Three Dimensions Warm Up Graph each of the following

3 -5 Linear Equations in Three Dimensions Warm Up Graph each of the following points in the coordinate plane. 1. A(2, – 1) 2. B(– 4, 2) 3. Find the intercepts of the line x: – 9; y: 3 Holt Algebra 2 .

3 -5 Linear Equations in Three Dimensions Objective Graph points and linear equations in

3 -5 Linear Equations in Three Dimensions Objective Graph points and linear equations in three dimensions. Vocabulary three-dimensional coordinate system ordered triple z-axis Holt Algebra 2

3 -5 Linear Equations in Three Dimensions A Global Positioning System (GPS) gives locations

3 -5 Linear Equations in Three Dimensions A Global Positioning System (GPS) gives locations using the three coordinates of latitude, longitude, and elevation. You can represent any location in threedimensional space using a three-dimensional coordinate system, sometimes called coordinate space. Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Each point in coordinate space can be

3 -5 Linear Equations in Three Dimensions Each point in coordinate space can be represented by an ordered triple of the form (x, y, z). The system is similar to the coordinate plane but has an additional coordinate based on the z-axis. Notice that the axes form three planes that intersect at the origin. Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Example 1 A: Graphing Points in Three

3 -5 Linear Equations in Three Dimensions Example 1 A: Graphing Points in Three Dimensions Graph the point in three-dimensional space. A(3, – 2, 1) From the origin, move 3 units forward along the x-axis, 2 units left, and 1 unit up. Holt Algebra 2 z y A(3, – 2, 1) x

3 -5 Linear Equations in Three Dimensions Example 1 B: Graphing Points in Three

3 -5 Linear Equations in Three Dimensions Example 1 B: Graphing Points in Three Dimensions Graph the point in three-dimensional space. B(2, – 1, – 3) z From the origin, move 2 units forward along the x-axis, 1 unit left, and 3 units down. y x B(2, – 1, – 3) Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Recall that the graph of a linear

3 -5 Linear Equations in Three Dimensions Recall that the graph of a linear equation in two dimensions is a straight line. In threedimensional space, the graph of a linear equation is a plane. Because a plane is defined by three points, you can graph linear equations in three dimensions by finding the three intercepts. Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Example 2: Graphing Linear Equations in Three

3 -5 Linear Equations in Three Dimensions Example 2: Graphing Linear Equations in Three Dimensions Graph the linear equation 2 x – 3 y + z = – 6 in three-dimensional space. Step 1 Find the intercepts: x-intercept: 2 x – 3(0) + (0) = – 6 x = – 3 y-intercept: 2(0) – 3 y + (0) = – 6 y=2 z-intercept: 2(0) – 3(0) + z = – 6 Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Example 2 Continued z Step 2 Plot

3 -5 Linear Equations in Three Dimensions Example 2 Continued z Step 2 Plot the points (– 3, 0, 0), (0, 2, 0), and (0, 0, – 6). Sketch a plane through the three points. (– 3, 0, 0) y (0, 2, 0) x (0, 0, – 6) Holt Algebra 2

3 -5 Linear Equations in Three Dimensions Example 3 A: Sports Application Track relay

3 -5 Linear Equations in Three Dimensions Example 3 A: Sports Application Track relay teams score 5 points for finishing first, 3 for second, and 1 for third. Lin’s team scored a total of 30 points. Write a linear equation in three variables to represent this situation. Let f = number of races finished first, s = number of races finished second, and t = number of races finished third. Points for first 5 f Holt Algebra 2 + Points for second + Points for third = = + + 1 t 3 s 30 30 +

3 -5 Linear Equations in Three Dimensions Example 3 B: Sports Application If Lin’s

3 -5 Linear Equations in Three Dimensions Example 3 B: Sports Application If Lin’s team finishes second in six events and third in two events, in how many events did it finish first? 5 f + 3 s + t = 30 5 f + 3(6) + (2) = 30 f=2 Use the equation from A. Substitute 6 for s and 2 for t. Solve for f. Linn’s team placed first in two events. Holt Algebra 2