1 Welcome Thanks for joining this ITRC Training

  • Slides: 96
Download presentation
1 Welcome – Thanks for joining this ITRC Training Class Environmental Molecular Diagnostics New

1 Welcome – Thanks for joining this ITRC Training Class Environmental Molecular Diagnostics New Tools for Better Decisions EMD Technical and Regulatory Guidance Web-Based Document Sponsored by: Interstate Technology and Regulatory Council (www. itrcweb. org) Hosted by: US EPA Clean Up Information Network (www. cluin. org)

2 Housekeeping u u Course time is 2¼ hours Question & Answer breaks •

2 Housekeeping u u Course time is 2¼ hours Question & Answer breaks • Phone - unmute #6 to ask • u question out loud Simulcast - ? icon at top to type in a question Turn off any pop-up blockers u u u Move through slides • Arrow icons at top of screen • List of slides on left Feedback form available from last slide – please complete before leaving This event is being recorded Download slides as PPT or PDF Go to slide 1 Move back 1 slide Move forward 1 slide Go to last slide Go to seminar homepage Submit comment or question Report technical problems Copyright 2013 Interstate Technology & Regulatory Council, 50 F Street, NW, Suite 350, Washington, DC 20001

3 ITRC (www. itrcweb. org) – Shaping the Future of Regulatory Acceptance u u

3 ITRC (www. itrcweb. org) – Shaping the Future of Regulatory Acceptance u u Host organization Network • State regulators u Disclaimer • Full version in “Notes” section • Partially funded by the U. S. § All 50 states, PR, DC government • Federal partners § ITRC nor US government warrantee material § ITRC nor US government DOE DOD endorse specific products EPA • ITRC materials copyrighted • ITRC Industry Affiliates Program u Available from www. itrcweb. org • Technical and regulatory guidance documents • Academia • Community stakeholders • Internet-based and classroom training schedule • More…

4 Meet the ITRC Trainers Jennifer Weidhaas James Fish West Virginia University Morgantown, WV

4 Meet the ITRC Trainers Jennifer Weidhaas James Fish West Virginia University Morgantown, WV 304 -293 -9952 jennifer. weidhaas @mail. wvu. edu Alaska DEC Fairbanks, AK 907 -451 -2117 james. fish @alaska. gov Paul Hatzinger Rebecca Mora SERDP Lawrenceville, NJ 609 -895 -5356 paul. hatzinger@CBIFederal Services. com AECOM Orange, CA 714 -689 -7254 rebecca. mora @aecom. com

5 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case

5 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A Training Progress

6 What If… You could tell whether the contaminants at your site are being

6 What If… You could tell whether the contaminants at your site are being degraded through biodegradation or being decreased through dilution? u You could tell at what rate these contaminants are being degraded? u You could decrease the size of your monitoring network and thereby reduce the cost of monitoring? u You could secure that final piece of evidence needed to close a site? u

7 What Are Environmental Molecular Diagnostics (EMDs)? u Group of analytical techniques • Used

7 What Are Environmental Molecular Diagnostics (EMDs)? u Group of analytical techniques • Used to analyze biological and chemical characteristics of soil, sediment, and water samples u Developed for medicine • Adapted for environmental site management u Two major categories • Chemical techniques • Molecular biological techniques (MBTs)

8 Hypothetical Case Study Using EMDs Investigation of BTEX contaminated groundwater u Are microorganisms

8 Hypothetical Case Study Using EMDs Investigation of BTEX contaminated groundwater u Are microorganisms actively degrading BTEX? u EMDs utilized and information provided direct evidence of u • Anaerobic BTEX biodegradation § RT-q. PCR benzylsuccinate synthase (bss. A) genes • Aerobic BTEX biodegradation § RT-q. PCR for aromatic oxygenase genes • Biological or chemical degradation § CSIA for BTEX isotopic enrichment u Allows for informed selection of remedy in a more timely manner compared to conventional monitoring

9 What is the Level of Regulatory Knowledge and Acceptance? u Survey results •

9 What is the Level of Regulatory Knowledge and Acceptance? u Survey results • 47 regulators from 29 • • states Most EMDs are new to regulators Expressed willingness to become educated Agreed that EMDs can contribute toward regulatory decision making Expressed concern about site implementation 34. 8% EMD Experience 65. 2% No EMD Experience Self Reported EMD Experience ITRC Team Affiliation

10 EMD Training Objectives Describe the utility of EMDs during site management activities u

10 EMD Training Objectives Describe the utility of EMDs during site management activities u Define when EMDs can augment traditional data sets u Understand when and how to utilize the EMD Tech Reg u ITRC, EMD, Section 1. 1

11 Questions that will be answered in today’s training What are EMDs? u How

11 Questions that will be answered in today’s training What are EMDs? u How can they help me? u What benefits do they provide compared to traditional tools? u How do I select an EMD? u How commonly are these tools used? u What is the level of regulatory knowledge and acceptance? u

12 Using EMDs Throughout Site Management ITRC, EMD, Section 2, Figure 2 -1

12 Using EMDs Throughout Site Management ITRC, EMD, Section 2, Figure 2 -1

13 What Can EMDs Tell You? Information not provided by traditional methods u Microbial

13 What Can EMDs Tell You? Information not provided by traditional methods u Microbial presence / abundance • For example, Dehalococcoides mccartyi (Dhc) Direct evidence of contaminant (bio)degradation u Microbial cellular activity (e. g. , expression of TCE degradation gene) u EMDs can provide the “missing piece” to make the best decision

14 Which EMDs Support Site Management Decision Making? u u Cells make a living

14 Which EMDs Support Site Management Decision Making? u u Cells make a living by • Eating • Breathing • Getting rid of waste • Reproducing • Adapting to environment Cells use enzymes to facilitate these processes u Molecular biological techniques (MBTs) • Quantitative polymerase chain • • u reaction (q. PCR) Fingerprinting methods (DGGE, TRFLP, PLFA) Microarrays Stable isotope probing (SIP) Fluorescence in situ hybridization (FISH) Enzyme activity probes (EAPs) • Chemical techniques • Compound specific isotopic analysis (CSIA)

15 Where Are EMDs Most Applicable? u EMDs are applicable to a variety of

15 Where Are EMDs Most Applicable? u EMDs are applicable to a variety of contaminants • Chlorinated solvents • Petroleum hydrocarbons • Inorganics u In a variety of media types • Groundwater u u • Pesticides • Explosives • Soil/sediment • Soil Gas Under different geochemical conditions • Anaerobic • Aerobic For the detection and/or quantification of: • Different microorganisms conducting biodegradation • Biological or chemical degradation products and pathways • Microbial enzymes facilitating biodegradation reactions

16 EMDs Are Not New u Data from 20092012 u Expand decision making tool

16 EMDs Are Not New u Data from 20092012 u Expand decision making tool box > 200 Projects 101 - 200 Projects 31 - 100 Projects 6 - 30 Projects 1 - 5 Projects 0 Projects

17 EMDs Can Be Used in Site Decisions u Air Force Civil Engineer Center

17 EMDs Can Be Used in Site Decisions u Air Force Civil Engineer Center (formerly AFCEE) guidance documents for MNA www. afcec. af. mil u National Academy publication “Alternatives for Managing the Nation’s Complex Contaminated Groundwater Sites, ” www/nap. edu/catalog. php? record_id=14668

18 EMD Cost and Availability EMD Cost per sample Widely commercially available Quantitative Polymerase

18 EMD Cost and Availability EMD Cost per sample Widely commercially available Quantitative Polymerase Chain Reaction (q. PCR) $ 275 - 425 Compound Specific Isotope Analysis (CSIA) $ 100 - 2, 500 Microbial Fingerprinting Methods $ 300 - 570 Minimally commercially available Microarrays $ 1, 250 - 5, 000 Stable isotope probing (SIP) $ 1, 500 and up Enzyme activity probes (EAPs) $ 250 - 2, 500 Fluorescence in situ hybridization (FISH) $ 250 - 5, 000 ITRC EMD-1, Introduction to EMDs Fact Sheet

19 Regulatory Approval Process for EMDs u u Involve the regulator as early as

19 Regulatory Approval Process for EMDs u u Involve the regulator as early as possible Work plan should include: • Explain site status with traditional analytical chemistry • • • u methods Identify EMDs to be used Explain how EMD data complements existing data, or detail what is expected to be learned by using the EMD Identify which stage of the life cycle process the EMD is to be used Identify sample locations Identify data quality objectives: type, quality and quantity of data to be collected. Identify any permitting requirements ITRC EMD Tech Reg, Section 11

20 Permitting Requirements for EMDs u u Most EMDs are laboratory techniques, permitting not

20 Permitting Requirements for EMDs u u Most EMDs are laboratory techniques, permitting not required Permitting may be needed for SIP and EAPs performed in situ • Varies from state to state, may include § Notification § Work plan § Discharge permit § Underground Injection Control (UIC) Permit ITRC EMD Tech Reg, Section 3 and Appendix C

21 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case

21 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Training Progress Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A

22 EMD Descriptions & Use: Compound Specific Isotopic Analysis Chemical Biological

22 EMD Descriptions & Use: Compound Specific Isotopic Analysis Chemical Biological

23 What Is a Stable Isotope? Isotopes: atoms with same number of protons, but

23 What Is a Stable Isotope? Isotopes: atoms with same number of protons, but a different number of neutrons Isotopes of Carbon Environmentally relevant stable isotopes Hydrogen 1 H, 2 H Oxygen 16 O, 17 O, 18 O ITRC EMD Tech Reg, Section 3 and Appendix C Carbon 12 C, 13 C Chlorine 35 Cl, 37 Cl Nitrogen 14 N, 15 N Sulfur 32 S, 34 S Source: Microseeps, Inc.

24 Why Are Stable Isotopes Useful? Compounds can have different ratios of stable isotopes

24 Why Are Stable Isotopes Useful? Compounds can have different ratios of stable isotopes (e. g. , 13 C: 12 C) depending on how they were formed and whether they have been degraded since environmental release. Forensics Documenting degradation (chemical or biological) Source Area A Source Area B ITRC EMD Tech Reg, Section 3 and Appendix C

25 How Are Isotope Ratios Measured? u u Stable isotope ratios are measured using

25 How Are Isotope Ratios Measured? u u Stable isotope ratios are measured using specially designed mass spectrometers: Isotope Ratio Mass Spectrometers (IRMS). If chemicals are analyzed individually (e. g. , separated first by GC) then the process is termed “Compound Specific Isotope Analysis (CSIA)” Compound 1 2 Combustion GC separation 1 2 Mass separation CO 2 ITRC EMD Tech Reg, Section 3 and Appendix C Source: USEPA. 2008

26 How Are Isotope Ratios Reported? ► Isotopic ratios of light elements are generally

26 How Are Isotope Ratios Reported? ► Isotopic ratios of light elements are generally reported relative to a known standard as “delta” (d) values and measured in parts-perthousand (denoted “‰” = per mil) Equation 1. d (in ‰) = (Rx/Rs-1) * 1000 R = ratio heavy/light isotope (e. g. , 13 C/12 C) Rx = sample (e. g. , 13 C/12 C in environmental sample) Rs = standard (e. g. , 13 C/12 C in carbon standard) Example: d 13 C = + 30 ‰ 30 parts-per-thousand (3 %) higher ratio of 13 C/12 C in sample relative to a known isotopic standard ITRC EMD Tech Reg, Section 3 and Appendix C

27 Stable Isotope Ratios as Delta Notation (d ) Isotope ratios use a sliding

27 Stable Isotope Ratios as Delta Notation (d ) Isotope ratios use a sliding scale - everything is relative to a standard ITRC EMD Tech Reg, Section 3 and Appendix C Source: Microseeps, Inc. , 2010

28 CSIA Forensic Applications u u If chemicals are made by different processes or

28 CSIA Forensic Applications u u If chemicals are made by different processes or with different reagents, stable isotope ratios can vary significantly CSIA can be a means to distinguish sources B A Elevation (m) 186 -32. 9 -27. 5 ± 0. 5‰ Example of three separate PCE sources identified by CSIA C -25. 5± 0. 5‰ 184 182 180 1 to 100 mg/L PCE 100 to 1, 000 mg/L PCE 178 1, 000 to 10, 000 mg/L PCE 176 10 20 30 40 Distance perpendicular to flow (m) ITRC EMD Tech Reg, Section 3 and Appendix C 50 Source: USEPA. 2008

29 CSIA: What Happens During Degradation? ► Stable isotope ratios in the parent molecule

29 CSIA: What Happens During Degradation? ► Stable isotope ratios in the parent molecule often increase during biological or chemical degradation “fractionation” Decreasing total candies 12 C Increasing ratio of yellow to blue Lighter Heavier ITRC EMD Tech Reg, Section 3 and Appendix C 13 C Source: Michael Hyman, Ph. D. , 2011

30 CSIA: What Happens During Degradation? u Example of isotopic enrichment during contaminant degradation

30 CSIA: What Happens During Degradation? u Example of isotopic enrichment during contaminant degradation d 13 C (per mil) Increasing 13 C/12 C ratio 60 Scenario 1 degradation processes 50 Scenario 2 degradation processes 40 Scenario 3 No fractionation for dilution or adsorption 30 20 10 100 Concentration (mg/L) 1000 Declining concentration ITRC EMD Tech Reg, Section 3 and Appendix C Source: Paul Hatzinger, Ph. D.

31 CSIA Benefits and Limitations u Benefits • Provides direct evidence of biological degradation

31 CSIA Benefits and Limitations u Benefits • Provides direct evidence of biological degradation or abiotic attenuation of contaminants • Useful for generating attenuation rates and mechanisms • Provides information to identify multiple sources • Commercially available u Limitations • Need laboratory fractionation factors for key contaminants and degrading organisms to calculate in situ attenuation rates • Multiple samples are required to generate attenuation rates • More commercial labs would be beneficial ITRC EMD Tech Reg, Section 3 and Appendix C

32 Case Study A 1: Distinguishing Perchlorate Sources with CSIA * Lower Detection Limits

32 Case Study A 1: Distinguishing Perchlorate Sources with CSIA * Lower Detection Limits -1998 * UCMR Testing - 2001 Legend One site Multiple sites DOD DOE, NASA, DOI Privately-owned UCMR detections University study detections Puerto Rico Source: USEPA 2004

33 Other Perchlorate Sources? Natural perchlorate • Chilean Caliche – Atacama Desert § Natural

33 Other Perchlorate Sources? Natural perchlorate • Chilean Caliche – Atacama Desert § Natural fertilizer • Mineral deposits and soils § Southwestern US u Other synthetic sources • Fireworks • Road flares • Perchloric acid and salts • Chlorate (herbicide) • Chlorine bleach US Import of Chilean Nitrate 2 1930 -1993 total estimated US import = 24 billion kg 1. 6 billion kg u 1. 2 0. 8 0. 4 0 1910 1930 1950 Year 1970 1990 Source: Figure 2, Reprinted with permission from Dasgupta, PK, JV Dyke, AB Kirk, and WA Jackson. 2006. Perchlorate in the United States. Analysis of Relative source contributions to the Food Chain. Environ. Sci. Technol. 40; 6608 -6614. Copyright 2006 American Chemical Society.

6 34 CSIA for Perchlorate u u u Methods developed for analysis of both

6 34 CSIA for Perchlorate u u u Methods developed for analysis of both O and Cl isotopes in perchlorate (Cl. O 4 -) Analyzed by Isotope Ratio Mass Spectrometer (IRMS) with a precision of about ± 0. 1 to 0. 5 ‰ Special columns developed to collect perchlorate from groundwater Elements in a compound can have widely different isotopic ratios based on mode of Formation. Stable isotope ratios can provide a unique “fingerprint” Hydrogen 1 H, 2 H Oxygen 16 O, 17 O, 18 O Carbon 12 C, 13 C Chlorine 35 Cl, 37 Cl Nitrogen 14 N, 15 N Sulfur 32 S, 34 S

Forensic Isotopic Analysis: Chilean vs. Synthetic d 37 Cl and d 18 O 9

Forensic Isotopic Analysis: Chilean vs. Synthetic d 37 Cl and d 18 O 9 Dual Isotope plot comparing d 37 Cl and d 18 O in Cl. O 4 from synthetic and natural Chilean sources Chlorine markedly “heavier” 5. 0 in synthetic perchlorate Laboratory Salts 0. 0 Military Herbicides Gunpowder Synthetic -5. 0 Fireworks Road Flares Taiwanese -10 d 37 Cl (per mil) 35 -15 Oxygen consistently “heavier” in natural (Chilean) perchlorate Chilean -20 -30 -25 -20 -15 -10 -5 d 18 O (per mil) 0 Natural (Chile) 5 10 Source: Paul Hatzinger, Ph. D.

36 Case Study: Long Island, NY 7 Wells Depot Lane BOMARC SCWA North Fork

36 Case Study: Long Island, NY 7 Wells Depot Lane BOMARC SCWA North Fork (Depot Lane) Depot lane BOMARC Westhampton (BOMARC) Northport (SCWA) 8 miles Column used to collect perchlorate for CSIA SCWA ITRC EMD Tech Reg, Appendix A. 1 Map Source: Adapted with permission from Böhlke, J. K. ; Hatzinger, P. B. ; Sturchio, N. C. ; Gu, B. ; Abbene, I. ; Mroczkowski, S. J. 2009. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York. Environ. Sci. Technol. 43: 5619 -5625. Copyright 2009 American Chemical Society. Photo Source: Paul Hatzinger, Ph. D.

20 37 Isotope Data, Long Island, NY d 37 Cl (per mil) 8. 0

20 37 Isotope Data, Long Island, NY d 37 Cl (per mil) 8. 0 North Fork (Depot Lane) Synthetic Bomarc 0. 0 Westhampton (BOMARC) -8. 0 -16 -30 Northport (SCWA) Chilean SCWA/DL -20 -10 0 d 18 O (per mil) ITRC EMD Tech Reg, Appendix A. 1 10 Figure and Map Source: Adapted with permission from Böhlke, J. K. ; Hatzinger, P. B. ; Sturchio, N. C. ; Gu, B. ; Abbene, I. ; Mroczkowski, S. J. 2009. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York. Environ. Sci. Technol. 43: 56195625. Copyright 2009 American Chemical Society.

38 Case Study A 3: Distinguishing TCE Sources with CSIA New Jersey TCE Site

38 Case Study A 3: Distinguishing TCE Sources with CSIA New Jersey TCE Site u. Site has two distinct depth zones • Upper Zone (UZ) is overburden and mostly unconsolidated • Lower Zone (LZ) is bedrock u. TCE contours suggest two sources: • UZ appears to have sources at UZ_1 and UZ_2 • LZ has 3 hot spots § LZ_1 § LZ_2 § LZ_3 ITRC EMD Tech Reg, Appendix A. 3

39 39 TCE Concentration in Upper Zone (mg/L) ter a w d n u

39 39 TCE Concentration in Upper Zone (mg/L) ter a w d n u o Gr UZ_1 390, 000 UZ_2 15, 000 TCE Concentration in Lower Zone (mg/L) ITRC EMD Tech Reg, Appendix A. 3 LZ_4 13, 300 LZ_3 49, 100 LZ_1 48, 600 LZ_2 37, 200 Source: Microseeps, Inc.

40 40 nd u o d 13 C ter a w Gr d 13

40 40 nd u o d 13 C ter a w Gr d 13 C of TCE in Upper Zone UZ_1 -38. 83 ‰ UZ_2 -32. 44 ‰ d 13 C of TCE in Lower Zone ITRC EMD Tech Reg, Appendix A. 3 LZ_1 -38. 47 ‰ LZ_2 -33. 03 ‰ Source: Microseeps, Inc.

41 TCE in Lower Zone: d 13 C LZ_4 -35. 98 ‰ LZ_1 -38.

41 TCE in Lower Zone: d 13 C LZ_4 -35. 98 ‰ LZ_1 -38. 47 ‰ LZ_2 -33. 03 ‰ ITRC EMD Tech Reg, Appendix A. 3 LZ_3 -35. 81 ‰ r te a w nd u ro G TCE at LZ_3 and LZ_4 likely to be a mixture Source: Microseeps, Inc.

42 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case

42 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A Training Progress

43 EMD Descriptions & Use: Biological EMDs Chemical Biological

43 EMD Descriptions & Use: Biological EMDs Chemical Biological

44 Cellular Components & Information Biomolecule RT-q. PCR FISH Microarrays EAPs EMD q. PCR

44 Cellular Components & Information Biomolecule RT-q. PCR FISH Microarrays EAPs EMD q. PCR Fingerprinting FISH, SIP Microarrays Fingerprinting SIP Information Provided Identity, abundance, & activity Specific gene expression or metabolic activity Specific enzyme activity General identity, activity, & biomass

45 Quantitative Polymerase Chain Reaction (q. PCR) ► DNA amplification process 2 … 30

45 Quantitative Polymerase Chain Reaction (q. PCR) ► DNA amplification process 2 … 30 cycles Cycle 1 Extracted DNA u 231 = 2 billion + copies Used to calculate the number of copies of specific DNA sequence (or gene) in a sample ITRC EMD Tech Reg, Section 4

46 Some Common q. PCR Gene Targets Target Gene Organism or Encoded Enzyme 16

46 Some Common q. PCR Gene Targets Target Gene Organism or Encoded Enzyme 16 s r. RNA Dehalococcoides mccartyi (Dhc) TCE & DCE tce. A TCE Reductase VC vcr. A, bvc. A Vinyl chloride Reductase tmo PCE, TCE, DCE, VC BTEX Petroleum Chlorinated Solvents Contaminants B, T, & Chlorobenzene tod & tol Toluene Dioxygenase Naphthalene nah Naphthalene Dioxygenase Alkanes alk Alkane Monooxygenase MTBE 16 s r. RNA MTBE-utilizing Methylibium spp Toluene & Xylene bss Benzylsuccinate Synthase (anaerobic) Perchlorate per Perchlorate reductase PCBs bph Biphenyl Dioxygenase Ring-hydroxylating Toluene Monooxygenases ITRC EMD Tech Reg, Appendix D, Tables D 2 & D 3

47 q. PCR Benefits and Limitations u Benefits • Confirms presence and determines abundance

47 q. PCR Benefits and Limitations u Benefits • Confirms presence and determines abundance of target microbes and genes • Allows monitoring of microbes involved in bioremediation • Readily commercially available for some key organisms and biodegradation-associated genes u Limitations • Infers biodegradation (potential or actual): • right microorganisms are present and in sufficient quantity for bioremediation to occur, or • changes in abundance or gene expression through time • Need to know what you are looking for ahead of time ITRC EMD Tech Reg, Section 4

48 Case Study A 4: DCE Stall Evaluation and Electron Donor Selection Site Background:

48 Case Study A 4: DCE Stall Evaluation and Electron Donor Selection Site Background: u Shallow aquifer impacted with chlorinated solvents u u u Detection of daughter products suggested reductive dechlorination High DCE with low VC and ethene suggested c. DCE stall Geochemical parameters suggested mildly anaerobic conditions & high levels of sulfate (842 mg/L) ITRC EMD Tech Reg, Appendix A. 4 u Site Characterization study 1) Control 2) Bio. Stim A, and 3) Bio. Stim B u q. PCR on bead biofilms for: Dhc, methanogens, & IRB/SRB Bio. Trap ™ Sampling Device Source: Microbial Insights, Inc.

49 Baited Bio-Trap Study Results ITRC EMD Tech Reg, Appendix A. 4 Source: Davis

49 Baited Bio-Trap Study Results ITRC EMD Tech Reg, Appendix A. 4 Source: Davis et al. , 2008 Integrated Approach to PCE-Impacted Site Characterization, Site Management and Enhanced Bioremediation. Remediation. Autumn. Used with permission

50 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4

50 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4 Source: modified from Davis et al. , 2008 Integrated Approach to PCEImpacted Site Characterization, Site Management and Enhanced Bioremediation. Remediation. Autumn. Used with permission

51 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4

51 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4 Source: modified from Davis et al. , 2008 Integrated Approach to PCEImpacted Site Characterization, Site Management and Enhanced Bioremediation. Remediation. Autumn. Used with permission

52 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4

52 q. PCR – Biostimulation & Remediation ITRC EMD Tech Reg, Appendix A. 4 Source: modified from Davis et al. , 2008 Integrated Approach to PCEImpacted Site Characterization, Site Management and Enhanced Bioremediation. Remediation. Autumn. Used with permission

53 Key Results from q. PCR u Site characterization phase • Dhc populations ND;

53 Key Results from q. PCR u Site characterization phase • Dhc populations ND; complete reductive dechlorination unlikely u Baited bio-trap and pilot study • electron donor B stimulated growth of Dhc & promoted reductive dechlorination u Pilot study & remedial monitoring • Extended lag prior to reductive dechlorination - temporary increase in methanogens • rebound of Dhc and vinyl chloride reductase genes (bvc. A) - complete reductive dechlorination expected u Final Conclusion • q. PCR results accepted as a valuable line of evidence • site was reclassified to “No Further Action Required” status ITRC EMD Tech Reg, Appendix A. 4

54 Question & Answer Break Training Topics Introduction to Training and EMDs CSIA and

54 Question & Answer Break Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A Training Progress

55 EMD Descriptions & Use: Biological EMDs Biological

55 EMD Descriptions & Use: Biological EMDs Biological

56 Microbial Fingerprinting Methods u Provides overall “fingerprint” of microbial community composition u Variety

56 Microbial Fingerprinting Methods u Provides overall “fingerprint” of microbial community composition u Variety of laboratory techniques • Differentiate microorganisms based on unique characteristics of universal biomolecules • DNA or RNA methods – • Phospholipid fatty acids analysis - u u DGGE, T-RFLP PLFA Some can identify subsets of microorganisms Some can quantify living biomass Lane 1 2 Acinetobacter sp. Band Geobacter sp. Unknown sp X. Methylobacterium sp. DGGE Profile Dominant bands excised Dominant and sequenced organisms identified ITRC EMD Tech Reg, Section 5 Source: Microbial Insights, Inc.

57 Microarrays ► u u Comprehensive microbial evaluation Simultaneously detects hundreds to thousands of

57 Microarrays ► u u Comprehensive microbial evaluation Simultaneously detects hundreds to thousands of genes • Phylogenetic microarray – who is there? • Functional gene microarray – what can they do? Can be performed with RNA to assess microbial activity Time 1 ITRC EMD Tech Reg, Section 6 Time 2 Source: Frank Loeffler, Ph. D.

58 Enzyme Activity Probes (EAPs) ► ► Detects and quantifies specific activities of microorganisms

58 Enzyme Activity Probes (EAPs) ► ► Detects and quantifies specific activities of microorganisms Estimates biodegradation activity u Surrogate compounds • Resemble contaminant of concern u Transformation of surrogate • Signal in cell is detected by microscopy or spectrophotometry u Enzyme Activity Probes: Micrographs DAPItotal cells Laboratory test or field-applicable with Push-Pull tests Enzyme probes -positive -negative response ITRC EMD Tech Reg, Section 8 Source: M. H. Lee

59 Fluorescence In Situ Hybridization (FISH) ► u u Estimates number and relative activity

59 Fluorescence In Situ Hybridization (FISH) ► u u Estimates number and relative activity of specific microorganisms or microbial groups Detects presence of targeted genetic material in whole cells Assesses spatial distributions ITRC EMD Tech Reg, Section 9 Source: M. H. Lee

60 Stable Isotope Probing (SIP) ► Demonstrates occurrence of biodegradation • Contaminant containing a

60 Stable Isotope Probing (SIP) ► Demonstrates occurrence of biodegradation • Contaminant containing a stable isotope label (e. g. , 13 C ) • If biodegradation is occurring, the isotope is detected in: - biomolecules (DNA, phospholipids) - degradation products (CO 2 or CH 4) • DNA- SIP is capable of identifying microorganisms responsible for biodegradation • PLFA-SIP very sensitive, but lacks phylogenetic resolution ITRC EMD Tech Reg, Section 7 13 C substrate added to environmental sample

61 Field Application of SIP u Involves passive sampling devices with labeled contaminant molecules

61 Field Application of SIP u Involves passive sampling devices with labeled contaminant molecules Bio-Sep® beads 13 C-labeled 13 C analysis benzene Bio-Trap™ ITRC EMD-1, Sampling Devices Fact Sheet Monitoring well of biomass and dissolved inorganic carbon Source: Microbial Insights

62 Summary of EMDs and Targeted Cellular Components Dehalococcoides mccartyi Photomicrograph Source: Reprinted by

62 Summary of EMDs and Targeted Cellular Components Dehalococcoides mccartyi Photomicrograph Source: Reprinted by permission from Macmillian Publishers Ltd: Nature. He et al, 2003. He, J. , Ritalahti, K. M. , Yang, K. -L. , Koenigsberg, S. S. & Loeffler, F. E. (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424, 62– 65, Copyright 2003. http: //www. nature. com/nature/index. html

63 Proper Application of EMDs u Traditional site characterization data (contaminant concentrations, geochemistry, etc.

63 Proper Application of EMDs u Traditional site characterization data (contaminant concentrations, geochemistry, etc. ) still needed, EMDs complement u Laboratory microcosms or cultivation studies may be needed for some sites, EMDs provide additional information u Proper EMD selection depends on question being asked (see Table 2. 3 in Tech Reg) u Some EMDs provide inferential instead of definitive information Best used to supplement traditional data, as additional lines of evidence

64 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case

64 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Training Progress Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A

65 Case Studies – Multiple EMDs No. A. 1 A. 2 ü A. 3

65 Case Studies – Multiple EMDs No. A. 1 A. 2 ü A. 3 ü A. 4 A. 5 ü A. 6 A. 7 A. 8 A. 9 A. 10 Env. Medium Contaminants Life Cycle State CSIA Groundwater Perchlorate Site Characterization NY Vapor Intrusion PCE, TCE, DCE Site Characterization CA Groundwater TCE Site Characterization NJ q. PCR Groundwater PCE, TCE, DCE Remediation NY Groundwater PCE, TCE, DCE Remediation CA RT-q. PCR Groundwater BTEX and MTBE Remediation CA EAP Groundwater TCE Remediation KY SIP Groundwater TCE, 1, 4 -dioxane Remediation AZ Groundwater Fuel oil compounds Remediation NJ Microarrays Groundwater Uranium Remediation CO ITRC EMD Tech Reg Appendix A

66 Case Study A 5: q. PCR and CSIA to Evaluate Culture Distribution and

66 Case Study A 5: q. PCR and CSIA to Evaluate Culture Distribution and Confirm Degradation u u Seal Beach Naval Weapons Station ESTCP Project ER-0513 Demonstration area had TCE concentrations as high as 190 mg/L Compared passive and active bioaugmentation ITRC EMD Tech Reg, Appendix A. 5 Site photo courtesy of J. Trotsky, US Navy.

67 Demonstration Layout Passive cell area: 100’x 35’ Active cell area: 130’x 50’ Monitoring

67 Demonstration Layout Passive cell area: 100’x 35’ Active cell area: 130’x 50’ Monitoring well Extraction well Injection well 12. 5 0 25 feet ITRC EMD Tech Reg, Appendix A. 5 Source: ESTCP Project ER-200513

68 Use of EMDs u q. PCR was used to • Determine if Dhc

68 Use of EMDs u q. PCR was used to • Determine if Dhc existed at the site and select an appropriate bioaugmentation culture • Evaluate bacterial growth and distribution throughout both treatment cells u CSIA was used to • Determine the extent of dechlorination in both treatment cells during the demonstration period ITRC EMD Tech Reg, Appendix A. 5

69 Project Approach u u Aquifer pre-conditioned Pre-bioaugmentation monitoring • Dhc detected, but Dhc

69 Project Approach u u Aquifer pre-conditioned Pre-bioaugmentation monitoring • Dhc detected, but Dhc functional gene vcr. A was not detected u u u Performed bioaugmentation using microbial culture containing the vcr. A gene vcr. A was used as a “tracer” Continued electron donor addition • Active cell: Weekly injections • Passive cell: Monthly injections ITRC EMD Tech Reg, Appendix A. 5 Source: Final Report for ESTCP Project ER-200513

70 q. PCR Results Show Culture Distribution in Active Cell AMW 2 - q.

70 q. PCR Results Show Culture Distribution in Active Cell AMW 2 - q. PCR Results for Dhc gene copies/L Dhc (cells/L) 18’ downgradient Collection Date ITRC EMD Tech Reg, Appendix A. 5 Source: ESTCP Project ER-200513

71 q. PCR Results Show Culture Distribution in Passive Cell PMW 6 - q.

71 q. PCR Results Show Culture Distribution in Passive Cell PMW 6 - q. PCR Results for Dhc 8’ downgradient Collection Date ITRC EMD Tech Reg, Appendix A. 5 Source: ESTCP Project ER-200513

72 CSIA Results Indicate Degradation Active Cell - AMW 2 18’downgradient ► ► Data

72 CSIA Results Indicate Degradation Active Cell - AMW 2 18’downgradient ► ► Data indicate TCE is substantially degraded δ 13 C TCE δ 13 C Value ► cis-DCE and VC values becoming heavier indicating they are being degraded δ 13 C DCE Range of δ 13 C values for manufactured TCE δ 13 C VC CSIA data consistent with VOC and ethene data ITRC EMD Tech Reg, Appendix A. 5 Source: ESTCP Project ER-200513

73 Conclusions u q. PCR results showed • Dhc was distributed similar distances from

73 Conclusions u q. PCR results showed • Dhc was distributed similar distances from injection points in both treatment cells, and populations were sustained • Better overall distribution throughout the treatment cell was achieved using the passive approach u CSIA results • Were consistent with VOC trends • Indicated TCE, c-DCE, and VC were degrading ITRC EMD Tech Reg, Appendix A. 5

74 u u u Case Study A 8: Use of Multiple EMDs to Evaluate

74 u u u Case Study A 8: Use of Multiple EMDs to Evaluate MNA Potential for TCE and 1, 4 -Dioxane Plume Air Force Plant 44, Tucson, AZ 6 -mile long plume • TCE • 1, 4 -dioxane Plumes appear to be shrinking/attenuating 1987 – Present: Pump and Treat Operation for >50 more years MNA & bioremediation are being explored General groundwater flow direction Sampling locations 1, 4 -dioxane 3 mg/L 1, 4 -dioxane 6 mg/L 1, 4 -dioxane 12 mg/L Photo: Courtesy of the US Air Force ITRC EMD Tech Reg, Appendix A. 9 Source: Chiang, S. D. , R. Mora, W. H. Diguiseppi, G. Davis, K. Sublette, P. Gedalanga, and S. Mahendra. “Characterizing the intrinsic bioremediation potential of 1, 4 -dioxane and trichloroethene using innovative environmental diagnostic tools. ” Journal of Environmental Monitoring. , 14, 23172326, 2012. Reproduced by permission of The Royal Society of Chemistry. http: //pubs. rsc. org/en/content/articlelanding/2012/em/c 2 em 30358 b

75 Approach Using EMDs Step Objective/Question Answered 1 Geochemical conditions? Field measurements Geochemical parameter

75 Approach Using EMDs Step Objective/Question Answered 1 Geochemical conditions? Field measurements Geochemical parameter analyses 2 Contaminant-degrading bacteria and enzymes present ? q. PCR : • Methanotrophs (MOB) • Soluble methane monooxygenase (s. MMO) • Toluene monooxygenases (PHE and RMO) • Toluene dioxygenase (TOD for TCE only) 3 TCE and/or 1, 4 -dioxane being aerobically degraded? 4 Contaminant-degrading enzymes metabolically active? ITRC EMD Tech Reg, Appendix A. 9 Measurements Compound Specific Isotope Analysis (CSIA) for TCE Stable Isotope Probing (SIP) Enzyme activity probes (EAPs)

76 q. PCR Results Indicate Presence Cells/beads 1. 00 E+10 PHE RMO s. MMO

76 q. PCR Results Indicate Presence Cells/beads 1. 00 E+10 PHE RMO s. MMO MOB TOD 1. 00 E+08 1. 00 E+06 1. 00 E+04 1. 00 E+02 1. 00 E+00 u u u M-01 A M-101 M-69 M-105 M-95 E-15 M-81 Targets were present and abundant in all wells s. MMO and MOB were abundant even though methane <0. 5 µg/L PHE, RMO, and TOD were present and abundant even though toluene was not present ITRC EMD Tech Reg, Appendix A. 9 Source: Chiang, S. D. , R. Mora, W. H. Diguiseppi, G. Davis, K. Sublette, P. Gedalanga, and S. Mahendra. “Characterizing the intrinsic bioremediation potential of 1, 4 -dioxane and trichloroethene using innovative environmental diagnostic tools. ” Journal of Environmental Monitoring. , 14, 2317 -2326, 2012. Reproduced by permission of The Royal Society of Chemistry. http: //pubs. rsc. org/en/content/articlelanding/2012/em/c 2 em 30358 b

77 SIP Results Show Incorporation into Biomass 1, 4 -Dioxane SIP Traps u 13

77 SIP Results Show Incorporation into Biomass 1, 4 -Dioxane SIP Traps u 13 C incorporation into biomass occurred in three out of four traps u ITRC EMD Tech Reg, Appendix A. 9 High 13 C dioxane incorporation into biomass at E-15 M suggests the use of dioxane as a growth supporting substrate Source: Chiang, S. D. , R. Mora, W. H. Diguiseppi, G. Davis, K. Sublette, P. Gedalanga, and S. Mahendra. “Characterizing the intrinsic bioremediation potential of 1, 4 -dioxane and trichloroethene using innovative environmental diagnostic tools. ” Journal of Environmental Monitoring. , 14, 2317 -2326, 2012. Reproduced by permission of The Royal Society of Chemistry. http: //pubs. rsc. org/en/content/articlelanding/2012/em/c 2 em 30358 b

78 CSIA Results Serve as Baseline u u u CSIA groundwater sampling before SIP

78 CSIA Results Serve as Baseline u u u CSIA groundwater sampling before SIP trap deployment CSIA data used to establish baseline isotopic fractionation and evaluate whether TCE degradation has occurred δ 13 C of undegraded TCE ranges from ~ -24 to -34 (EPA, 2008) Comparison between wells shows a difference of up to 3 ‰ Even robust aerobic co-metabolism of TCE results in small shifts in δ 13 C Loc ID M-101 E-15 M (DUP) Conc (mg/L) Feb 2009 330 110 390 δ 13 C (‰) -25. 12 -25. 22 -25. 55 -28. 02 -27. 92 ITRC EMD Tech Reg, Appendix A. 9 M-69 (DUP)

79 2 EAP Results Indicate Enzymes Are Active Units = cells per milliliter Probes

79 2 EAP Results Indicate Enzymes Are Active Units = cells per milliliter Probes for Toluene Oxygenases (PHE, RMO, TOL, TOD) Sample Probe for s. MMO PA 3 -HPA CINN 3 EB Coumarin M-69 - 1. 05 E+04 - - 15. 22 M-69 8. 21 E+03 1. 25 E+04 - - - M-01 A 2. 54 E+04 - 2. 14 E+04 8. 12 E+03 - M-81 2. 15 E+04 2. 04 E+04 - - 42. 11 M-105 2. 68 E+04 2. 21 E+04 1. 12 E+04 - - M-101 3. 54 E+04 - - M-95 2. 45 E+04 - 1. 42 E+04 - - u u At least one positive result in all wells Enzymes are active and intrinsic aerobic biodegradation is occurring ITRC EMD Tech Reg, Appendix A. 9

80 Conclusions u u q. PCR results showed presence and abundance CSIA results did

80 Conclusions u u q. PCR results showed presence and abundance CSIA results did not confirm TCE degradation, but did serve as a baseline Incorporation of 13 C into biomass suggests 1, 4 -dioxane may serve as a growth supporting substrate EAP results confirmed that enzymes are active Multiple EMDs and lines of evidence showed that MNA can be considered as part of the site remedial strategy ITRC EMD Tech Reg, Appendix A. 9

81 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case

81 Today’s Training Outline Training Topics Introduction to Training and EMDs CSIA and Case Studies q. PCR and Case Study Question & Answer Break Biological EMDs Case Studies using Multiple EMDs Web-Based Tech Reg Navigation Question & Answer Break Tech Reg Sections 1, 2, 11 3, App. C 4, App A 5 -10, App. D App. A Training Progress

82 EMD Technical Regulatory Guidance Document (Tech Reg)

82 EMD Technical Regulatory Guidance Document (Tech Reg)

83 EMD Tech Reg Contents • Using EMDs in site management • Comparison of

83 EMD Tech Reg Contents • Using EMDs in site management • Comparison of different methods • Strengths • Limitations • Summary of EMDs • Summary of method • Applications • Data Interpretation • Data quality considerations • Regulatory/stakeholder acceptance • Case studies • FAQ, glossary, more information

84 EMD Tech Reg Topics: Crib Notes! Quick links to key sections specific to

84 EMD Tech Reg Topics: Crib Notes! Quick links to key sections specific to reader interests Suggested Reading for: • Regulators • Consultants • Public and Stakeholders

85 Tech Reg Using EMDs in Site Management (Table 2 -1) With Conventional Data:

85 Tech Reg Using EMDs in Site Management (Table 2 -1) With Conventional Data: Evaluate concentration trends EMDs allow for: More accurate evaluation of microbial response to remedy Potential Data Gaps: Limited ability to optimize remedy

86 Tech Reg Using EMDs in Site Management (Table 2 -2) q. PCR Limitations:

86 Tech Reg Using EMDs in Site Management (Table 2 -2) q. PCR Limitations: Does not confirm biodegradation activity. Consider also using CSIA Advantages & Benefits: Quantifies number of gene copies, confirming presence of target microbes or degradation gene in sample

87 Tech Reg Using EMDs to Answer Primary Questions (Table 2 -3) Are contaminant

87 Tech Reg Using EMDs to Answer Primary Questions (Table 2 -3) Are contaminant degrading organisms present? Is biodegradation occurring?

88 Decision Diagrams TABLE 2. 3 Questions: B) Site Characterization - Are contaminant-degrading microorganisms

88 Decision Diagrams TABLE 2. 3 Questions: B) Site Characterization - Are contaminant-degrading microorganisms active? Q) Monitoring - Are contaminant-degrading microorganisms remaining active? Q 1) Do you want to enumerate specific organisms or functional groups? 1 N 2 N Are FISH probes available? Is a q. PCR analysis available? Q 2) Do you want to determine the presence and activity of well-defined groups or functional community? Y Y Are PCR primers available? Y Y Q 3) Do you want to confirm historic activity? N N Is a CSIA method available? Y N Are enzyme probes available? 3 Check Presence Instead (Q 2) FISH RTq. PCR ITRC EMD Tech Reg Figure 2 -4 Microarray or RT-q. PCR EAP or SIP CSIA

89 EMD Method Sections Summary u Applications u Data interpretation u • How are

89 EMD Method Sections Summary u Applications u Data interpretation u • How are the data reported? • How are the data interpreted? Practical considerations u Additional information u ITRC EMD Tech Reg, Sections 3 - 9

90 EMD Method Sections: q. PCR Example

90 EMD Method Sections: q. PCR Example

91 EMD Method Sections: Example Applications (Table 4 -1) Site: Case Study A 5,

91 EMD Method Sections: Example Applications (Table 4 -1) Site: Case Study A 5, CA COCs: chlorinated solvents EMDs used: q. PCR & CSIA Project Life Cycle: Monitoring

92 EMD Method Sections: Data Interpretation Link to Table 2 -3 Primary Questions EMDs

92 EMD Method Sections: Data Interpretation Link to Table 2 -3 Primary Questions EMDs can answer: “Are Contaminant Degrading Organisms Present? ” Example organisms and genes to analyze to answer the question: “Dhc 16 S r. RNA” Recommended minimum acceptable levels to expect biodegradation: “>2*106 genes/L”

93 EMD Method Sections: Data Reports u Recommended and Desirable Information for Lab Reports

93 EMD Method Sections: Data Reports u Recommended and Desirable Information for Lab Reports Typical reporting limits • 100 gene copies per L or g soil Laboratory Control Sample Results • DNA extraction blank • laboratory q. PCR positive and negative ITRC EMD Tech Reg Table 4 -2

94 Biological EMD Data Quality u u Basic concepts Project life cycle sample requirements

94 Biological EMD Data Quality u u Basic concepts Project life cycle sample requirements • • u Number, frequency and location of samples Active versus passive sampling Aseptic sampling and sterility Trends and assessment of remedial progress and optimization QA/QC • Laboratory procedures and controls • Sample collection and handling u u Known biases Reporting ITRC EMD Tech Reg, Section 10

95 Wrap Up: Ready to… u u u Describe the utility of EMDs during

95 Wrap Up: Ready to… u u u Describe the utility of EMDs during remediation activities Define when EMDs can cost effectively augment traditional data sets Determine when and how to utilize the EMD Tech Reg

96 Thank You for Participating u 2 nd question and answer break u Links

96 Thank You for Participating u 2 nd question and answer break u Links to additional resources • http: //www. clu-in. org/conf/itrc/EMD/resource. cfm u Feedback form – please complete • http: //www. clu-in. org/conf/itrc/EMD/feedback. cfm Need confirmation of your participation today? Fill out the feedback form and check box for confirmation email.