1 Image Segmentation ISANDSP GROUP Pixel Oriented Image

  • Slides: 50
Download presentation

��� 1 ������� Image Segmentation ISAN-DSP GROUP

��� 1 ������� Image Segmentation ISAN-DSP GROUP

Pixel Oriented Image Segmentation �������������� ������ Intensity Thresholding T = 102 ��������� ��� Histogram

Pixel Oriented Image Segmentation �������������� ������ Intensity Thresholding T = 102 ��������� ��� Histogram ������ multimo �������������� After thresholding

Image Segmentation based on Histogram Profile �������������� Histogram T 1 = 158 T 2

Image Segmentation based on Histogram Profile �������������� Histogram T 1 = 158 T 2 = 196 T 3 = 228 T 1< P <T 2 T 2< P <T 3 P > T 3

����� Image Segmentation based on Histogram Profile �������������� peak ���� Histogram Image degraded by

����� Image Segmentation based on Histogram Profile �������������� peak ���� Histogram Image degraded by Gaussian noise (s =12) T 1 = 158 T 2 = 196 T 3 = 228 T 1< P <T 2 T 2< P <T 3 P > T 3

����� Image Segmentation based on Histogram Profile ������������� T=0. 4 Error ������ ISAN-DSP GROUP

����� Image Segmentation based on Histogram Profile ������������� T=0. 4 Error ������ ISAN-DSP GROUP

Pixel Oriented Image Segmentation for Multispectral Images ����� pixel oriented image segmentation ���� multispectrum

Pixel Oriented Image Segmentation for Multispectral Images ����� pixel oriented image segmentation ���� multispectrum ������ partition �� Feature spac ������������ Partition Image Domain Boundary ������ Munich ���� Blue 1 0. 5 0 1 0. 2 0. 8 0. 4 0. 6 From www. jpl. nasa. gov/radar/ sircxsar/munch. html 0. 4 0. 8 Red 1 0. 2 Green Feature Space (RGB)

Region Oriented Image Segmentation �������������� ��������� �������������������� Region oriented image segmentation 1. Region Growing

Region Oriented Image Segmentation �������������� ��������� �������������������� Region oriented image segmentation 1. Region Growing 2. Region Splitting and Merging P Connected pixels Pixel P and its neighbors

Region Splitting and Merging Image Segmentation Region Splitting ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation Region Splitting ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation ���������� Region Spliting ����� standard deviation ��� �����

Region Splitting and Merging Image Segmentation ���������� Region Spliting ����� standard deviation ��� ����� ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation 2. Merging ����������� ��� ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation 2. Merging ����������� ��� ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation ���������� Region Merging ��������� ISAN-DSP GROUP

Region Splitting and Merging Image Segmentation ���������� Region Merging ��������� ISAN-DSP GROUP

Gradient Vector Field Gradient ������� Vector ����������� Gradient Vector Field ������� �� ����

Gradient Vector Field Gradient ������� Vector ����������� Gradient Vector Field ������� �� ����

Gradient based image segmentation ����� |ÑP| Thresholding ��� T ����� Edge map ��� T

Gradient based image segmentation ����� |ÑP| Thresholding ��� T ����� Edge map ��� T �������������� T=60 T=100

Laplacian based image segmentation ����� Ñ 2 P Zero Crossing Detection Edge map Laplacian

Laplacian based image segmentation ����� Ñ 2 P Zero Crossing Detection Edge map Laplacian �������� Zero crossing Detection ����� thresholding ����� T=0 ISAN-DSP GROUP

Gradient VS Laplacian Gradient Laplacian ÑP Ñ 2 P Local Extrema Zero Crossing ��������

Gradient VS Laplacian Gradient Laplacian ÑP Ñ 2 P Local Extrema Zero Crossing �������� of |ÑP| ������� (step edge) �������������� ����������� ��� Thresholding Zero Crossing ������� Detection |ÑP| ����������� �� edge map ������ �� ISAN-DSP GROUP

��� 2 Image Segmentation Algorithm Based on Model of A Particle in A Vector

��� 2 Image Segmentation Algorithm Based on Model of A Particle in A Vector Image Field ISAN-DSP GROUP

New Approach : Model of a Particle in a Vector Field Gradient Vector Field

New Approach : Model of a Particle in a Vector Field Gradient Vector Field Edge Vector Field (Hamiltonian Gradient Field)

Edge Vector Field Edge vector field ��������� ISAN-DSP GROUP

Edge Vector Field Edge vector field ��������� ISAN-DSP GROUP

Particle Model in an Edge Vector Field ����������� edge vector field ���� a>0 ������������

Particle Model in an Edge Vector Field ����������� edge vector field ���� a>0 ������������ : �� edge vector field ����������� (spiral trajecto

Particle Model in an Edge Vector Field ����� P 0 Edge vector field �����

Particle Model in an Edge Vector Field ����� P 0 Edge vector field �����

Normal Compressive Vector Field ������������ vector field ������ compressive) ���������� Normal Compressive Field

Normal Compressive Vector Field ������������ vector field ������ compressive) ���������� Normal Compressive Field

Normal Compressive Vector Field ISAN-DSP GROUP

Normal Compressive Vector Field ISAN-DSP GROUP

Combined Orthogonal Vector Field �������� ISAN-DSP GROUP

Combined Orthogonal Vector Field �������� ISAN-DSP GROUP

Particle Motion in A Combined Orthogonal Vector Field ���������� ���������

Particle Motion in A Combined Orthogonal Vector Field ���������� ���������

Particle Motion in A Combined Orthogonal Vector Field Edge vector field Particle trajectory P

Particle Motion in A Combined Orthogonal Vector Field Edge vector field Particle trajectory P 0 Shape distortion at a corner

Boundary Extraction of Multiple Objects 1 -way boundary extraction 2 -way boundary extraction �������������������������

Boundary Extraction of Multiple Objects 1 -way boundary extraction 2 -way boundary extraction ������������������������� ISAN-DSP GROUP

Boundary Extraction Algorithm Based on Particle Model in a Vector Image Field . 1�����

Boundary Extraction Algorithm Based on Particle Model in a Vector Image Field . 1����� Mask ���������� Gradient ��� Laplacian ������. 2����� edge vector field ��� normal compressive vector f . 3������������ Local maxima ��� Gradient magnitude image. 4������������ . 5 ������������������������� ISAN-DSP GROUP

Experimental Results: MRI Image (Obtained using multiple scale Gaussian differential masks with smin =

Experimental Results: MRI Image (Obtained using multiple scale Gaussian differential masks with smin = 0. 5, smax = 2. 0) ������ The whole brain atlas, www. med. harvard. edu/AANLIB/home. html ISAN-DSP GROUP

Experimental Results: Flaw Detection in X-Ray Images Original image Gradient image Boundary extraction results

Experimental Results: Flaw Detection in X-Ray Images Original image Gradient image Boundary extraction results (s=1. 0)

Experimental Results: Multiscale Boundary Extraction Gradient images and extracted boundaries s 1=0. 5 s

Experimental Results: Multiscale Boundary Extraction Gradient images and extracted boundaries s 1=0. 5 s 2=4. 77 s 3=18. 81

Other Popular Image Segmentation Techniques 1. Level Set Method 2. Active Contour (Snake) 3.

Other Popular Image Segmentation Techniques 1. Level Set Method 2. Active Contour (Snake) 3. Marching Cube 4. Water Shading 5. Nonlinear Diffusion 6. Hough Transform ISAN-DSP GROUP

Image Segmentation : Future Trends. 1 Multiresolution Image Segmentation -Pyramid Representation of Regions -Application

Image Segmentation : Future Trends. 1 Multiresolution Image Segmentation -Pyramid Representation of Regions -Application of Wavelet Transform to Image segmentation. 2 Intelligent Image Segmentation Algorithm -Incorporating high level knowledge based system for image segmentation -Segmentation and interpretation at the same time ISAN-DSP GROUP

ISAN-DSP GROUP

ISAN-DSP GROUP