1 Fysisk institutt Rikshospitalet Ultrasound waves Ultrasound 20

  • Slides: 38
Download presentation
1 Fysisk institutt - Rikshospitalet

1 Fysisk institutt - Rikshospitalet

Ultrasound waves Ultrasound > 20 k. Hz, normally 1 -15 MHz i medicine When

Ultrasound waves Ultrasound > 20 k. Hz, normally 1 -15 MHz i medicine When a wave is sent in one direction, it will continue until reflected, deflected or absorbed. Sound speed is independent of frequency but dependent on the medium Sound speed is related to density, compressibility and intensity V = λf Because the frequency remains unchanged when the medium is changed, the wavelength has to change because the speed is changed 2 Fysisk institutt - Rikshospitalet

Ultrasound waves No transport of US-waves in vacum and poor transport in gases =>

Ultrasound waves No transport of US-waves in vacum and poor transport in gases => Air must NOT be present Transducer must be in close contact to the object Use acoustic gel to ensure transmission from transducer to object Bone tissue is a barrier for US Without the audible range for both animals and humans Pulsed or continuous, dependent on the object. Mainly pulsed in image forming US 3 Fysisk institutt - Rikshospitalet

Resolution Axial resolution: Ability to discriminate two objects in parallell to the beam. Best

Resolution Axial resolution: Ability to discriminate two objects in parallell to the beam. Best at high frequencies Lateral resolution: Ability to discriminate two objects perpendicular to the beam Best at the focal zone 4 Fysisk institutt - Rikshospitalet

Ultrasound waves Eccocharacteristics Anechoic (ecco-free) Tissue without acoustic interface looks black Hypoechoic (poor ecco)

Ultrasound waves Eccocharacteristics Anechoic (ecco-free) Tissue without acoustic interface looks black Hypoechoic (poor ecco) Tissue with low ecco-genesity will be dark grey Tissue with medium ecco-genesity will be light grey Hyperechoic Ecco rich tissue, from light grey to white 5 Fysisk institutt - Rikshospitalet

Handheld probe 6 Fysisk institutt - Rikshospitalet

Handheld probe 6 Fysisk institutt - Rikshospitalet

Modern ultrasound devices 7 Fysisk institutt - Rikshospitalet

Modern ultrasound devices 7 Fysisk institutt - Rikshospitalet

Ultrasound 3 D www. theultrasoundzone. com/3 dultrasoundphotos. html 8 Fysisk institutt - Rikshospitalet

Ultrasound 3 D www. theultrasoundzone. com/3 dultrasoundphotos. html 8 Fysisk institutt - Rikshospitalet

Ultrasound piezo crystal Kilde: Alejandro Frangi 9 Fysisk institutt - Rikshospitalet

Ultrasound piezo crystal Kilde: Alejandro Frangi 9 Fysisk institutt - Rikshospitalet

Piezo-electric disc 10 Fysisk institutt - Rikshospitalet

Piezo-electric disc 10 Fysisk institutt - Rikshospitalet

Ultrasound (US), A-mode (amplitude) 11 Fysisk institutt - Rikshospitalet

Ultrasound (US), A-mode (amplitude) 11 Fysisk institutt - Rikshospitalet

Time motion US, M-mode 12 Fysisk institutt - Rikshospitalet

Time motion US, M-mode 12 Fysisk institutt - Rikshospitalet

M-mode Ultrasound (motion) 13 Fysisk institutt - Rikshospitalet

M-mode Ultrasound (motion) 13 Fysisk institutt - Rikshospitalet

B-mode 14 Fysisk institutt - Rikshospitalet

B-mode 14 Fysisk institutt - Rikshospitalet

B-mode (Brightness) Same as A-mode, but twodimensional graphical display where brightness indicates the amplitude

B-mode (Brightness) Same as A-mode, but twodimensional graphical display where brightness indicates the amplitude to reflected sound Most modern US-systems is realtime 2 D or 3 D. Multiple crystals or mobile crystals Up to 100 images per second 15 Fysisk institutt - Rikshospitalet

Summarized A, B og M-mode Kilde: Alejandro Frangi 16 Fysisk institutt - Rikshospitalet

Summarized A, B og M-mode Kilde: Alejandro Frangi 16 Fysisk institutt - Rikshospitalet

Probes 4 -12 MHz 17 Fysisk institutt - Rikshospitalet

Probes 4 -12 MHz 17 Fysisk institutt - Rikshospitalet

4 different probeprinciples 18 Fysisk institutt - Rikshospitalet

4 different probeprinciples 18 Fysisk institutt - Rikshospitalet

Piezoelectric array-probe Volumetric scan realtime Possibilities for multiplan reslicing retrospectively Realtime volume rendering 19

Piezoelectric array-probe Volumetric scan realtime Possibilities for multiplan reslicing retrospectively Realtime volume rendering 19 Fysisk institutt - Rikshospitalet

Side lobes 20 Fysisk institutt - Rikshospitalet

Side lobes 20 Fysisk institutt - Rikshospitalet

Ultrasound transducer frequency vs resolution • A 15 MHz scan has very good resolution

Ultrasound transducer frequency vs resolution • A 15 MHz scan has very good resolution but penetrates a short distance only • A 3 MHz scan penetrate far into the body, but the resolution is poor – High frequency = High resolution – High frequency = Poor range Kilde: Alejandro Frangi 21 Fysisk institutt - Rikshospitalet

Piezoelectric crystal, beam shape Kilde: Alejandro Frangi 22 Fysisk institutt - Rikshospitalet

Piezoelectric crystal, beam shape Kilde: Alejandro Frangi 22 Fysisk institutt - Rikshospitalet

Piezoelectric crystal, beam shape Kilde: Alejandro Frangi 23 Fysisk institutt - Rikshospitalet

Piezoelectric crystal, beam shape Kilde: Alejandro Frangi 23 Fysisk institutt - Rikshospitalet

Overview Time-gain compensation Kilde: Alejandro Frangi 24 Fysisk institutt - Rikshospitalet

Overview Time-gain compensation Kilde: Alejandro Frangi 24 Fysisk institutt - Rikshospitalet

Attenuation 25 Fysisk institutt - Rikshospitalet

Attenuation 25 Fysisk institutt - Rikshospitalet

Sources of error (1) 26 Fysisk institutt - Rikshospitalet

Sources of error (1) 26 Fysisk institutt - Rikshospitalet

Sources of error (2) 27 Fysisk institutt - Rikshospitalet

Sources of error (2) 27 Fysisk institutt - Rikshospitalet

Sources of error (3, 4, 5) 28 Fysisk institutt - Rikshospitalet

Sources of error (3, 4, 5) 28 Fysisk institutt - Rikshospitalet

3 D transducer 29 Fysisk institutt - Rikshospitalet

3 D transducer 29 Fysisk institutt - Rikshospitalet

Catheter probe 30 Fysisk institutt - Rikshospitalet

Catheter probe 30 Fysisk institutt - Rikshospitalet

Doppler ultrasound Higher frequency = blood towards the transducer Lower frequency = blood away

Doppler ultrasound Higher frequency = blood towards the transducer Lower frequency = blood away from the transducer Kilde: Alejandro Frangi 31 Fysisk institutt - Rikshospitalet

Doppler ultrasound 32 Fysisk institutt - Rikshospitalet

Doppler ultrasound 32 Fysisk institutt - Rikshospitalet

Doppler image/velocity 33 Fysisk institutt - Rikshospitalet

Doppler image/velocity 33 Fysisk institutt - Rikshospitalet

Colour doppler 34 Fysisk institutt - Rikshospitalet

Colour doppler 34 Fysisk institutt - Rikshospitalet

Doppler 35 Fysisk institutt - Rikshospitalet

Doppler 35 Fysisk institutt - Rikshospitalet

Ultrasound advantages • Muscles and soft tissue are suitable for US-imaging, especially transitions between

Ultrasound advantages • Muscles and soft tissue are suitable for US-imaging, especially transitions between solid substances and liquid filled areas. • Real time images = fast diagnosis. Can also be used to biopsy-guiding • Shows the organ structure • No well-known side effects, not unpleasant for the patient • Small scanners compared to other image modalities • Inexpensive compared to other image modalities • Spatial resolution is better at high-frequency US than most of the other modalities 36 Fysisk institutt - Rikshospitalet

Ultrasound disadvantages • • Unable to penetrate bone tissue Poor performance where gas is

Ultrasound disadvantages • • Unable to penetrate bone tissue Poor performance where gas is present Limited operating range, dependent on the frequency High requrements for the operator, can be difficult to interpret • Difficult to track back a scanned volume, as soon as the pictures are aquired no exact anchor-pile is available to navigate in the volume 37 Fysisk institutt - Rikshospitalet

Future? Source: General Electric. The next stethoscope of the medical doctor? 38 Fysisk institutt

Future? Source: General Electric. The next stethoscope of the medical doctor? 38 Fysisk institutt - Rikshospitalet