1 8 1 Proving the Vertical Angles Theorem

  • Slides: 49
Download presentation
1. 8. 1: Proving the Vertical Angles Theorem 1

1. 8. 1: Proving the Vertical Angles Theorem 1

Warm-Up #12 Monday, 3/7/2016 Advanced Integrated 2 1. When two dice are tossed, what

Warm-Up #12 Monday, 3/7/2016 Advanced Integrated 2 1. When two dice are tossed, what is the probability that the sum is NOT 11? 2. What is the chance of getting exactly 10 heads in 35 coin flips? 3. A family has five children, what is the probability that exactly one of them is a girl? 1. 8. 1: Proving the Vertical Angles Theorem 2

Warm-Up #12 Monday, 3/7/2016 Integrated 2 1. A company has to select 3 officers

Warm-Up #12 Monday, 3/7/2016 Integrated 2 1. A company has to select 3 officers from a pool of 6 candidates. How many different ways can this be done if the officer are in different positions? 2. A coach must choose how to line up his five starters from a team of 12 players. How many different ways can the coach choose the starters? 3. In a class of 33 students, 12 have blue eyes, and 14 have brown hair. This includes 5 who have both. Create a Venn diagram. 1. 8. 1: Proving the Vertical Angles Theorem 3

Homework Monday, 3/7/2016 Vertical Angles 1. 8. 1: Proving the Vertical Angles Theorem 4

Homework Monday, 3/7/2016 Vertical Angles 1. 8. 1: Proving the Vertical Angles Theorem 4

Vertical Angles 1. 8. 1: Proving the Vertical Angles Theorem 5

Vertical Angles 1. 8. 1: Proving the Vertical Angles Theorem 5

 • Theorem: a statement or conjecture that can be proven true by given,

• Theorem: a statement or conjecture that can be proven true by given, definitions, postulates, or already proven theorems • Postulate: a statement that describes a fundamental relationship between basic terms of geometry. Postulates are accepted as true without proof. • Conjecture: an educated guess based on known information 1. 8. 1: Proving the Vertical Angles Theorem 6

Key Concepts • Angles can be labeled with one point at the vertex, three

Key Concepts • Angles can be labeled with one point at the vertex, three points with the vertex point in the middle, or with numbers. See the examples that follow. 7 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Be careful when using one vertex point to name the

Key Concepts, continued • Be careful when using one vertex point to name the angle, as this can lead to confusion. • If the vertex point serves as the vertex for more than one angle, three points or a number must be used to name the angle. 8 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Straight angles are angles with rays in opposite directions—in other

Key Concepts, continued • Straight angles are angles with rays in opposite directions—in other words, straight angles are straight lines. Straight angle ∠BCD is a straight angle. Points B, C, and D lie on the same line. Not a straight angle ∠PQR is not a straight angle. Points P, Q, and R do not lie on the same line. 9 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Adjacent angles are angles that lie in the same plane

Key Concepts, continued • Adjacent angles are angles that lie in the same plane and share a vertex and a common side. They have no common interior points. • Nonadjacent angles have no common vertex or common side, or have shared interior points. 10 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Adjacent angles ∠ABC is adjacent to ∠CBD. They share vertex B

Key Concepts, continued Adjacent angles ∠ABC is adjacent to ∠CBD. They share vertex B and. ∠ABC and ∠CBD have no common interior points. 11 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Nonadjacent angles ∠ABE is not adjacent to ∠FCD. They do not

Key Concepts, continued Nonadjacent angles ∠ABE is not adjacent to ∠FCD. They do not have a common vertex. (continued) 12 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Nonadjacent angles ∠PQS is not adjacent to ∠PQR. They share common

Key Concepts, continued Nonadjacent angles ∠PQS is not adjacent to ∠PQR. They share common interior points within ∠PQS. 13 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Linear pairs are pairs of adjacent angles whose non-shared sides

Key Concepts, continued • Linear pairs are pairs of adjacent angles whose non-shared sides form a straight angle. 14 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Linear pair ∠ABC and ∠CBD are a linear pair. They are

Key Concepts, continued Linear pair ∠ABC and ∠CBD are a linear pair. They are adjacent angles with non -shared sides, creating a straight angle. 15 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Not a linear pair ∠ABE and ∠FCD are not a linear

Key Concepts, continued Not a linear pair ∠ABE and ∠FCD are not a linear pair. They are not adjacent angles. 16 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Vertical angles are nonadjacent angles formed by two pairs of

Key Concepts, continued • Vertical angles are nonadjacent angles formed by two pairs of opposite rays. Theorem Vertical Angles Theorem Vertical angles are congruent. 17 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Vertical angles ∠ABC and ∠EBD are vertical angles. ∠ABE and ∠CBD

Key Concepts, continued Vertical angles ∠ABC and ∠EBD are vertical angles. ∠ABE and ∠CBD are vertical angles. 18 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Not vertical angles ∠ABC and ∠EBD are not vertical angles. and

Key Concepts, continued Not vertical angles ∠ABC and ∠EBD are not vertical angles. and are not opposite rays. They do not form one straight line. 19 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Postulate Angle Addition Postulate If D is in the interior of

Key Concepts, continued Postulate Angle Addition Postulate If D is in the interior of ∠ABC, then m∠ABD + m∠DBC = m∠ABC. If m∠ABD + m∠DBC = m∠ABC, then D is in the interior of ∠ABC. 20 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Informally, the Angle Addition Postulate means that the measure of

Key Concepts, continued • Informally, the Angle Addition Postulate means that the measure of the larger angle is made up of the sum of the two smaller angles inside it. • Supplementary angles are two angles whose sum is 180º. • Supplementary angles can form a linear pair or be nonadjacent. 21 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • In the diagram below, the angles form a linear pair.

Key Concepts, continued • In the diagram below, the angles form a linear pair. m∠ABD + m∠DBC = 180 22 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • The next diagram shows a pair of supplementary angles that

Key Concepts, continued • The next diagram shows a pair of supplementary angles that are nonadjacent. m∠PQR + m∠TUV = 180 23 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Theorem Supplement Theorem If two angles form a linear pair, then

Key Concepts, continued Theorem Supplement Theorem If two angles form a linear pair, then they are supplementary. 24 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Angles have the same congruence properties that segments do. Theorem

Key Concepts, continued • Angles have the same congruence properties that segments do. Theorem Congruence of angles is reflexive, symmetric, and transitive. • Reflexive Property: • Symmetric Property: If , then. • Transitive Property: If and , then. 25 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Theorem Angles supplementary to the same angle or to congruent angles

Key Concepts, continued Theorem Angles supplementary to the same angle or to congruent angles are congruent. If and , then. 26 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Perpendicular lines form four adjacent and congruent right angles. Theorem

Key Concepts, continued • Perpendicular lines form four adjacent and congruent right angles. Theorem If two congruent angles form a linear pair, then they are right angles. If two angles are congruent and supplementary, then each angle is a right angle. 27 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • The symbol for indicating perpendicular lines in a diagram is

Key Concepts, continued • The symbol for indicating perpendicular lines in a diagram is a box at one of the right angles, as shown below. 28 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • The symbol for writing perpendicular lines is read as “is

Key Concepts, continued • The symbol for writing perpendicular lines is read as “is perpendicular to. ” • In the diagram, , and is . • Rays and segments can also be perpendicular. • In a pair of perpendicular lines, rays, or segments, only one right angle box is needed to indicate perpendicular lines. 29 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • Remember that perpendicular bisectors are lines that intersect a segment

Key Concepts, continued • Remember that perpendicular bisectors are lines that intersect a segment at its midpoint at a right angle; they are perpendicular to the segment. • Any point along the perpendicular bisector is equidistant from the endpoints of the segment that it bisects. 30 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Theorem Perpendicular Bisector Theorem If a point lies on the perpendicular

Key Concepts, continued Theorem Perpendicular Bisector Theorem If a point lies on the perpendicular bisector of a segment, then that point is equidistant from the endpoints of the segment. If a point is equidistant from the endpoints of a segment, then the point lies on the perpendicular bisector of the segment. (continued) 31 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Theorem If is the perpendicular bisector of , then DA =

Key Concepts, continued Theorem If is the perpendicular bisector of , then DA = DC. If DA = DC, then is the perpendicular bisector of. 1. 8. 1: Proving the Vertical Angles Theorem 32

Key Concepts, continued • Complementary angles are two angles whose sum is 90º. •

Key Concepts, continued • Complementary angles are two angles whose sum is 90º. • Complementary angles can form a right angle or be nonadjacent. • The following diagram shows a pair of nonadjacent complementary angles. 33 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued 34 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued 34 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued • The diagram at right shows a pair of adjacent complementary

Key Concepts, continued • The diagram at right shows a pair of adjacent complementary angles labeled with numbers. 35 1. 8. 1: Proving the Vertical Angles Theorem

Key Concepts, continued Theorem Complement Theorem If the non-shared sides of two adjacent angles

Key Concepts, continued Theorem Complement Theorem If the non-shared sides of two adjacent angles form a right angle, then the angles are complementary. Angles complementary to the same angle or to congruent angles are congruent. 36 1. 8. 1: Proving the Vertical Angles Theorem

Common Errors/Misconceptions • not recognizing theorem that is being used or that needs to

Common Errors/Misconceptions • not recognizing theorem that is being used or that needs to be used • setting expressions equal to each other rather than using the Complement or Supplement Theorems • mislabeling angles with a single letter when that letter is the vertex for adjacent angles • not recognizing adjacent and nonadjacent angles 37 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice Example 4 Prove that vertical angles are congruent given a pair of

Guided Practice Example 4 Prove that vertical angles are congruent given a pair of intersecting lines, and. 38 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 1. Draw a diagram and label three adjacent angles.

Guided Practice: Example 4, continued 1. Draw a diagram and label three adjacent angles. 39 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 2. Start with the Supplement Theorem. Supplementary angles add

Guided Practice: Example 4, continued 2. Start with the Supplement Theorem. Supplementary angles add up to 180º. 40 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 3. Use substitution. Both expressions are equal to 180,

Guided Practice: Example 4, continued 3. Use substitution. Both expressions are equal to 180, so they are equal to each other. Rewrite the first equation, substituting m∠ 2 + m∠ 3 in for 180. m∠ 1 + m∠ 2 = m∠ 2 + m∠ 3 41 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 4. Use the Reflexive Property. m∠ 2 = m∠

Guided Practice: Example 4, continued 4. Use the Reflexive Property. m∠ 2 = m∠ 2 42 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 5. Use the Subtraction Property. Since m∠ 2 =

Guided Practice: Example 4, continued 5. Use the Subtraction Property. Since m∠ 2 = m∠ 2, these measures can be subtracted out of the equation m∠ 1 + m∠ 2 = m∠ 2 + m∠ 3. This leaves m∠ 1 = m∠ 3. 43 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 6. Use the definition of congruence. Since m∠ 1

Guided Practice: Example 4, continued 6. Use the definition of congruence. Since m∠ 1 = m∠ 3, by the definition of congruence, ∠ 1 and ∠ 3 are vertical angles and they are congruent. This proof also shows that angles supplementary to the same angle are congruent. ✔ 44 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 45 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 4, continued 45 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice Example 5 In the diagram at right, perpendicular bisector of If AD

Guided Practice Example 5 In the diagram at right, perpendicular bisector of If AD = 4 x – 1 and DC = x + 11, what are the values of AD and DC ? is the. 46 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 5, continued 1. Use the Perpendicular Bisector Theorem to determine the

Guided Practice: Example 5, continued 1. Use the Perpendicular Bisector Theorem to determine the values of AD and DC. If a point is on the perpendicular bisector of a segment, then that point is equidistant from the endpoints of the segment being bisected. That means AD = DC. 47 1. 8. 1: Proving the Vertical Angles Theorem

Guided Practice: Example 5, continued 2. Use substitution to solve for x. AD =

Guided Practice: Example 5, continued 2. Use substitution to solve for x. AD = 4 x – 1 and DC = x + 11 Given equations AD = DC Perpendicular Bisector Theorem 4 x – 1 = x + 11 Substitute 4 x – 1 for AD and x + 11 for DC. 3 x = 12 Combine like terms. x=4 Divide both sides of the equation by 3. 1. 8. 1: Proving the Vertical Angles Theorem 48

Guided Practice: Example 5, continued 3. Substitute the value of x into the given

Guided Practice: Example 5, continued 3. Substitute the value of x into the given equations to determine the values of AD and DC. AD = 4 x – 1 DC = x + 11 AD = 4(4) – 1 DC = (4) + 11 AD = 15 DC = 15 AD and DC are each 15 units long. ✔ 49 1. 8. 1: Proving the Vertical Angles Theorem