1 1957 2 U Fano Phys Rev 124

  • Slides: 19
Download presentation
Подход эффективного гамильтониана 1. М. С. Лифшиц, ЖЭТФ (1957). 2. U. Fano, Phys. Rev.

Подход эффективного гамильтониана 1. М. С. Лифшиц, ЖЭТФ (1957). 2. U. Fano, Phys. Rev. 124, 1866 (1961). 3. H. Feshbach, , Ann. Phys. (New York) 5 (1958) 357; 19 (1962) 287. 4. C. Mahaux, H. A. Weidenmuller, (Shell-Model Approach to Nuclear Reactions), North-Holland, Amsterdam, 1969. 5. I. Rotter, Rep. Prog. Phys. , 54, 635 (1991). 6. S. Datta, (Electronic transport in mesoscopic systems) (1995). 7. S. Albeverio, et al J. Math. Phys. 37, 4888 (1996). 8. Y. V. Fyodorov and H. -J. Sommers, J. Math. Phys. 38, 1918 (1997) 9. F. Dittes, Phys. Rep. (2002). 10. Sadreev and I. Rotter, J. Phys. A (2003). 11. J. Okolowicz, M. Ploszajczak, and I. Rotter, Phys. Rep. 374, 271(2003). 12. D. V. Savin, V. V. Sokolov V. V. , and H. -J. Sommers, PRE (2003). 13. Sadreev, J. Phys. A (2012). • Coupled mode theory (оптика) H. A. Haus, (Waves and Fields in Optoelectronics) (1984). C. Manolatou, et al, IEEE J. Quantum Electron. (1999). S. Fan, et al, J. Opt. Soc. Am. A 20, 569 (2003). S. Fan, et al, Phys. Rev. B 59, 15882 (1999). W. Suh, et al, IEEE J. of Quantum Electronics, 40, 1511 (2004). Bulgakov and Sadreev, Phys. Rev. B 78, 075105 (2008).

Coupled defect mode with propagating over waveguide light Manolatou, et al, IEEE J. Quant.

Coupled defect mode with propagating over waveguide light Manolatou, et al, IEEE J. Quant. Electronics, (1999)

CMT • Много-модовый резонатор IEEE J. Quantum Electronics, 40, 1511 (2004)

CMT • Много-модовый резонатор IEEE J. Quantum Electronics, 40, 1511 (2004)

Два порта, две моды %CMT for transmission through resonator with two modes clear all

Два порта, две моды %CMT for transmission through resonator with two modes clear all E=-2: 0. 01: 2; D=[sqrt(0. 1) sqrt(0. 25)]; G=0. 5*D'*D; H 0=diag([-0. 25]); H=H 0 -1 i*G; for j=1: length(E) Q=E(j)*diag([1 1])-H; in=[1; 0]; IN=1 i*D'*in; A=QIN; ; A 1(j)=A(1); A 2(j)=A(2); t(: , j)=-in+D*A; end

W is matrix Nx. M where N is the number of eigen states of

W is matrix Nx. M where N is the number of eigen states of closed quantum system, M is the number of continuums (channels)

S. Datta, (Electronic transport in mesoscopic systems) (1995).

S. Datta, (Electronic transport in mesoscopic systems) (1995).

S-matrix Basis of closed billiard The biorthogonal basis

S-matrix Basis of closed billiard The biorthogonal basis

c H. -W. Lee, Generic Transmission Zeros and In-Phase Resonances in Time-Reversal Symmetric Single

c H. -W. Lee, Generic Transmission Zeros and In-Phase Resonances in Time-Reversal Symmetric Single Channel Transport, Phys. Rev. Lett. 82, 2358 (1999)

2 d case Limit to continual case

2 d case Limit to continual case

Na=input('input length along transport Na=') Nb=input('input length cross to transport Nb=') Nin=input('input numerical position

Na=input('input length along transport Na=') Nb=input('input length cross to transport Nb=') Nin=input('input numerical position of the input lead Nin=') Nout=input('input numerical position of the output lead Nout=') NL=length(Nin); NR=length(Nout); v. L=1; v. R=v. L; tb=1; %Leads E=-2. 9: 0. 011: 1; HL=zeros(NL, NL); HL=HL-diag(ones(1, NL-1), 1); HL=HL+HL'; HL=HL-diag(sum(HL), 0); for np=1: NL kpp=acos(-E/2+EL(np, np)/2); kp(np, 1: length(E))=kpp; end HR=HL; %Dot N=Na*Nb; HB=zeros(N, N); HB=HB-diag(ones(1, N-1), 1)-diag(ones(1, N-Na), Na); HB(Na: N-Na, Na+1: Na: N-Na+1)=0; HB=tb*(HB+HB'); %Coupling matrix psi. Bin=psi. B(Nin, : ); psi. Bout=psi. B(Nout, : ); WL=v. L*psi. Bin'*psi. L'; WR=v. R*psi. Bout'*psi. L'; DB=diag(ones(Na*Nb, 1)); for j=1: length(E) g=diag(exp(i*kp(: , j))); gg=diag(sin(real(kp(: , j))). ^0. 5); WW=WL*g*WL'+WR*g*WR'; Heff=diag(EB)-WW; QQ=DB*E(j)-Heff; PP=QQ^(-1); SS=2*i*(WL*gg)'*PP*WR*gg; t(n, j)=SS(1, 1); Matlab calculation

Datta’s site representation

Datta’s site representation

Effective Hamiltonian for time-periodic case For stationary case l

Effective Hamiltonian for time-periodic case For stationary case l

Numerical results N=1 l=0. 75, v. C=0. 25 m=-1, 0, 1 21 quasi energies

Numerical results N=1 l=0. 75, v. C=0. 25 m=-1, 0, 1 21 quasi energies H. Fukuyama, R. A. Bari, and H. C. Fogedby, PRB (1973). BS, J. Phys. C (1999): Критерий применимости теории возмущений